1
|
Hu Y, Sarkar A, Song K, Michael S, Hook M, Wang R, Heczey A, Song X. Selective refueling of CAR T cells using ADA1 and CD26 boosts antitumor immunity. Cell Rep Med 2024; 5:101530. [PMID: 38688275 PMCID: PMC11148642 DOI: 10.1016/j.xcrm.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is hindered in solid tumor treatment due to the immunosuppressive tumor microenvironment and suboptimal T cell persistence. Current strategies do not address nutrient competition in the microenvironment. Hence, we present a metabolic refueling approach using inosine as an alternative fuel. CAR T cells were engineered to express membrane-bound CD26 and cytoplasmic adenosine deaminase 1 (ADA1), converting adenosine to inosine. Autocrine secretion of ADA1 upon CD3/CD26 stimulation activates CAR T cells, improving migration and resistance to transforming growth factor β1 suppression. Fusion of ADA1 with anti-CD3 scFv further boosts inosine production and minimizes tumor cell feeding. In mouse models of hepatocellular carcinoma and non-small cell lung cancer, metabolically refueled CAR T cells exhibit superior tumor reduction compared to unmodified CAR T cells. Overall, our study highlights the potential of selective inosine refueling to enhance CAR T therapy efficacy against solid tumors.
Collapse
MESH Headings
- Animals
- Adenosine Deaminase/metabolism
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Immunotherapy, Adoptive/methods
- Dipeptidyl Peptidase 4/metabolism
- Dipeptidyl Peptidase 4/immunology
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Inosine
- Tumor Microenvironment/immunology
- Xenograft Model Antitumor Assays
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
Collapse
Affiliation(s)
- Yue Hu
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Abhijit Sarkar
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Kevin Song
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Biology, University of Houston, Houston, TX, USA
| | - Sara Michael
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Synthesis Biology, University of Houston, Houston, TX, USA
| | - Magnus Hook
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Andras Heczey
- Texas Children's Hospital, Houston, TX, USA; Department of Pediatric, Baylor College of Medicine, Houston, TX, USA
| | - Xiaotong Song
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA; Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
2
|
Macrophage induced ERK-TGF-β1 signaling in MCF7 breast cancer cells result in reversible cancer stem cell plasticity and epithelial mesenchymal transition. Biochim Biophys Acta Gen Subj 2022; 1866:130215. [PMID: 35905921 DOI: 10.1016/j.bbagen.2022.130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Breast cancer is a heterogenous disease composed of multiple clonal populations and the mechanism by which the tumor microenvironment induces cancer stem cell plasticity is not fully understood. METHODS MCF7 breast cancer cells were treated with macrophage conditioned medium (MɸCM). PD98059 and SB431542 were used for ERK and TGF-βR inhibition respectively. Epithelial-mesenchymal transition (EMT) and cancer stem cell markers (CSC) were studied using qRT-PCR and flowcytometry. SCID mice were used for animal experiments. RESULTS MɸCM- induced ERK/TGF-β1 signaling led to enrichment of CSC and EMT in MCF7 cells and mammospheres. These effects were abrogated by both MEK inhibitor PD98059 (TGF-β1 synthesis) and SB431542 (TGF-β1 signaling). The increase in CSC was both hybrid (ALDH1+) and mesenchymal (CD44+ CD24- cells). Increase in hybrid E/M state was at a single cell level as confirmed by the increase in both claudin-1 (E) and vimentin (M). This did not have any growth advantage in SCID mice and monitoring of CSC and EMT markers before and after growth in SCID mice indicated reversal of these markers in tumor cells recovered from mice. Removal of MɸCM and neutralization of TNF-α, IL-6 and IL-1β in MɸCM abrogated ERK phosphorylation, TGF-β and CSC enrichment indicating the requirement of continuous signaling for maintenance. CONCLUSIONS ERK signaling plays an important role in MɸCM- induced EMT and CSC plasticity which is completely reversible upon withdrawal of signals. GENERAL SIGNIFICANCE Our experimental observations support the semi-independent nature of EMT-stemness connection which is very dynamic and reversible depending on the microenvironment.
Collapse
|
3
|
Yadav P, Kundu P, Pandey VK, Amin PJ, Nair J, Shankar BS. Effects of prolonged treatment of TGF-βR inhibitor SB431542 on radiation-induced signaling in breast cancer cells. Int J Radiat Biol 2022; 98:1-15. [PMID: 35446183 DOI: 10.1080/09553002.2022.2069299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE We have earlier characterized increased TGF-β signaling in radioresistant breast cancer cells. In this study, we wanted to determine the effect of prolonged treatment of TGF-βR inhibitor SB431542 on radiation-induced signaling, viz., genes regulating apoptosis, EMT, anti and pro-inflammatory cytokines. MATERIALS AND METHODS Breast cancer cells were pretreated with TGF-βR inhibitor (SB 431542) followed by exposure to 6 Gy and recovery period of 7 days (D7-6G). We assessed cell survival by MTT assay, cytokines by ELISA and expression analysis by RT-PCR, flow cytometry, and western blot. We carried out migration assays using trans well inserts. We performed bioinformatics analyses of human cancer database through cBioportal. RESULTS There was an upregulation of TGF-β1 and 3 and downregulation of TGF-β2, TGF-βR1, and TGF-βR2 in invasive breast carcinoma samples compared to normal tissue. TGF-β1 and TNF-α was higher in radioresistant D7-6G cells with upregulation of pSMAD3, pNF-kB, and ERK signaling. Pretreatment of D7-6G cells with TGF-βR inhibitor SB431542 abrogated pSMAD3, increased proliferation, and migration along with an increase in apoptosis and pro-apoptotic genes. This was associated with hybrid E/M phenotype and downregulation of TGF-β downstream genes, HMGA2 and Snail. There was complete agreement in the expression of mRNA and protein data in genes like vimentin, Snail and HMGA2 in different treatment groups. However, there was disagreement in expression of mRNA and protein in genes like Bax, Bcl-2, E-cadherin, Zeb-1 among the different treatment groups indicating post-transcriptional and post-translational processing of these proteins. Treatment of cells with only SB431542 also increased expression of some E/M genes indicating TGF-β independent effects. Increased IL-6 and IL-10 secretion by SB431542 along with increase in pSTAT3 and pCREB1 could probably explain these TGF-β/Smad3 independent effects. CONCLUSION These results highlight that TGF-β-pSMAD3 and TNF-α-pNF-kB are the predominant signaling pathways in radioresistant cells and possibility of some TGF-β/Smad3 independent effects on prolonged treatment with the drug SB431542.
Collapse
Affiliation(s)
- Poonam Yadav
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Priya Kundu
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vipul K Pandey
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Prayag J Amin
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Jisha Nair
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhavani S Shankar
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|