1
|
Ananta, Benerjee S, Tchounwou PB, Kumar S. Mechanistic update of Trisenox in blood cancer. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100166. [PMID: 38074774 PMCID: PMC10701371 DOI: 10.1016/j.crphar.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024] Open
Abstract
Acute promyelocytic leukemia (APL)/blood cancer is M3 type of acute myeloid leukemia (AML) formed inside bone marrow through chromosomal translocation mutation usually between chromosome 15 & 17. It accounts around 10% cases of AML worldwide. Trisenox (TX/ATO) is used in chemotherapy for treatment of all age group of APL patients with highest efficacy and survival rate for longer period. High concentration of TX inhibits growth of APL cells by diverse mechanism however, it cures only PML-RARα fusion gene/oncogene containing APL patients. TX resistant APL patients (different oncogenic make up) have been reported from worldwide. This review summarizes updated mechanism of TX action via PML nuclear bodies formation, proteasomal degradation, autophagy, p53 activation, telomerase activity, heteromerization of pRb & E2F, and regulation of signaling mechanism in APL cells. We have also provided important information of combination therapy of TX with other molecules mechanism of action in acute leukemia cells. It provides updated information of TX action for researcher which may help finding new target for further research in APL pathophysiology or new TX resistant APL patients drug designing.
Collapse
Affiliation(s)
- Ananta
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Swati Benerjee
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD 21251, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
2
|
Pan X, Huang J, Liu S, Shao Y, Xi J, He R, Shi T, Zhuang R, Yu W. pH-Responsive and liver-targeting drug delivery system for combination delivery of artesunate with arsenic trioxide prodrug against hepatocellular carcinoma. Drug Dev Ind Pharm 2023; 49:485-496. [PMID: 37470495 DOI: 10.1080/03639045.2023.2239342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Arsenic trioxide (ATO) exerts therapeutic effects on various solid tumors, and artesunate (ART) synergizes with antitumor drugs. We herein combined ART and an ATO prodrug (ATOP) in pH-responsive and liver-targeting liposomes to improve targeted hepatocellular carcinoma (HCC) treatment. METHODS 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-hydrazone (HYD)-polyethylene glycol (PEG)-glycyrrhetinic acid (GA) (DSPE-HYD-PEG-GA) was synthesized and characterized. The optimal ratio of ART and ATOP was selected. Calcium arsenate nanoparticles (CaAs NPs) and DSPE-HYD-PEG-GA@ART/CaAs NPs liposomes were prepared and their physicochemical properties were characterized. Their intracellular uptake, intracellular localization, uptake pathway identification, cytotoxicity, proapoptotic effects, and relevant mechanisms were studied. RESULTS The DSPE-HYD-PEG-GA was successfully synthesized. The best ratio of ART and ATOP was 7:1. The particle size of CaAs NPs under transmission electron microscopy was 142.39 ± 21.50 nm. Arsenic (As), calcium, and oxygen elements were uniformly distributed in CaAs NPs, and the drug loading and encapsulation efficiency of As are 37.28% and 51.40%, respectively. The liposomes were elliptical, and the particle size was 100.91 ± 39.31 nm. The liposome cell intake was significantly increased in Huh-7 cells. The liposomes entered the cell through macropinocytosis and caveolin-mediated endocytosis and were predominantly distributed in the cytoplasm. They exerted an excellent inhibitory effect on Huh-7 cells and promoted tumor cell apoptosis through lipid peroxidation, mitochondrial membrane potential reduction, and cell-cycle blockage. CONCLUSIONS The pH-responsive and liver-targeting drug delivery system for the combination delivery of ART with ATOP showed promising effects on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinsong Huang
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shourong Liu
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Shi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Chen JZ, Wang LN, Luo XQ, Tang YL. The genomic landscape of sensitivity to arsenic trioxide uncovered by genome-wide CRISPR-Cas9 screening. Front Oncol 2023; 13:1178686. [PMID: 37251921 PMCID: PMC10214836 DOI: 10.3389/fonc.2023.1178686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Arsenic trioxide (ATO) is a promising anticancer drug for hematological malignancy. Given the dramatic efficacy of acute promyelocytic leukemia (APL), ATO has been utilized in other types of cancers, including solid tumors. Unfortunately, the results were not comparable with the effects on APL, and the resistance mechanism has not been clarified yet. This study intends to identify relevant genes and pathways affecting ATO drug sensitivity through genome-wide CRISPR-Cas9 knockdown screening to provide a panoramic view for further study of ATO targets and improved clinical outcomes. Methods A genome-wide CRISPR-Cas9 knockdown screening system was constructed for ATO screening. The screening results were processed with MAGeCK, and the results were subjected to pathway enrichment analysis using WebGestalt and KOBAS. We also performed protein-protein interaction (PPI) network analysis using String and Cytoscape, followed by expression profiling and survival curve analysis of critical genes. Virtual screening was used to recognize drugs that may interact with the hub gene. Results We applied enrichment analysis and identified vital ATO-related pathways such as metabolism, chemokines and cytokines production and signaling, and immune system responses. In addition, we identified KEAP1 as the top gene relating to ATO resistance. We found that KEAP1 expression was higher in the pan-cancer, including ALL, than in normal tissue. Patients with acute myeloid leukemia (AML) with higher KEAP1 expression had worse overall survival (OS). A virtual screen showed that etoposide and eltrombopag could bind to KEAP1 and potentially interact with ATO. Discussion ATO is a multi-target anticancer drug, and the key pathways regulating its sensitivity include oxidative stress, metabolism, chemokines and cytokines, and the immune system. KEAP1 is the most critical gene regulating ATO drug sensitivity, which is related to AML prognosis and may bind to some clinical drugs leading to an interaction with ATO. These integrated results provided new insights into the pharmacological mechanism of ATO and potentiate for further applications in cancer treatments.
Collapse
Affiliation(s)
- Jun-Zhu Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li-Na Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xue-Qun Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
5
|
Yu S, Ge Z, Chen W, Han J. Pyrrolidine Dithiocarbamate Enhances the Cytotoxic Effect of Arsenic Trioxide on Acute Promyelocytic Leukemia Cells. Comb Chem High Throughput Screen 2023; 26:2067-2076. [PMID: 36694317 DOI: 10.2174/1386207326666230123155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND More than 95% patients with acute promyelocytic leukemia (APL) carry the PML-RARα fusion oncoprotein. Arsenic trioxide (ATO) is an efficacious therapeutic agent for APL, and the mechanism involves the binding with PML and degradation of PML-RARα protein. Pyrrolidine dithiocarbamate (PDTC) demonstrates the function of facilitating the cytotoxic effect of ATO. PURPOSE To investigate whether PDTC is potential to enhance the cytotoxic effect of ATO to APL cells by acting on PML-RARα oncoproteins. METHODS Inhibitory effects of drugs on cell viability were examined by CCK-8 test, and apoptosis was evaluated by flow cytometry. Western blotting and immunofluorescence assays were used to explore the mechanism. RESULTS PDTC improved the effect of ATO on inhibiting proliferation of NB4 cells in vitro. Further, PDTC-ATO promoted apoptosis and cell cycle arrest in NB4 cells. The expression of caspase- 3 and Bcl-2 was reduced in PDTC-ATO-treated NB4 cells, while cleaved caspase-3 and Bax was up-regulated. Furthermore, less PML-RARα expression were found in PDTC-ATO-treated NB4 cells than that in NB4 cells treated with ATO singly. Laser confocal microscopy showed that protein colocalization of PML and RARα was disrupted more significantly by PDTC-ATO treatment than that with ATO monotherapy. CONCLUSION In conclusion, PDTC enhanced the cytotoxic effect of ATO on APL, and the mechanism was, at least in part, related to the promotion of ATO-induced degradation of PML-RARα fusion protein via forming a complex PDTC-ATO.
Collapse
Affiliation(s)
- Simin Yu
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weixiang Chen
- General Department of Chongming Branch, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinbin Han
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Wen J, Xu F, Zhou Q, Shi L, Liu Y, Yue J, Zhang Y, Liang X. Predictors of early death and clinical features in newly diagnosed patients with low-intermediate risk acute promyelocytic leukemia. Front Oncol 2022; 12:895777. [PMID: 36185183 PMCID: PMC9515425 DOI: 10.3389/fonc.2022.895777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although most acute promyelocytic leukemia(APL) with low-intermediate risk could survive the induction treatment, early death still a big problem to have effects on overall survival in real world.This study aimed to analyze the clinical characteristics and possible predictors of early death in newly diagnosed patients with low-intermediate-risk acute promyelocytic leukemia. Methods Sixty patients with newly diagnosed low/intermediate-risk APL admitted to Mianyang Central Hospital from January 2013 to December 2021 were retrospectively analyzed. Results Sixty patients with a median age of 46 years (range, 17-75 years) were included. Fourteen patients (23.3%) were in low-risk group, and 46 patients (76.7%) were in intermediate-risk group. Fourteen patients (23.3%) died during induction treatment. Five patients died of hemorrhage, 5 of severe infection and 4 of differentiation syndrome. Multivariate analysis showed that HGB <65g/L at diagnosis (OR=38.474, 95%CI: 2.648~558.923, P=0.008) during induction treatment was an independent risk factors for early death in low- intermediate risk APL patients. In survival group, all patients achieved complete remission, the time to achieve remission was 25.87 ± 5.02 days, the average ATO dosage was 0.16 ± 0.03 mg/kg/day. In univariate analysis, there was no statistically significant difference in time span for remission when ATO dosage was in the 0.11~0.16mg/kg/day range. Compared with patients with low-risk APL, those with intermediate-risk APL had higher white blood cell counts (at diagnosis, day 3, day 5 and peak), higher level of lactate dehydrogenase, higher percentage of bone marrow promyelocytes, more platelet transfusions during treatment, and more early deaths (P<0.05). The overall survival of intermediate-risk APL patients seemed worse than those with low-risk APL (χ=5.033, P =0.025). Conclusions In patients with low-intermediate risk APL, HGB <65g/L at diagnosis was an independent risk factors for early death. Remission could still be achieved at low-dose ATO without affecting the required time for low-intermediate risk APL patients. Differences in clinical characteristics were found between low-risk and intermediate-risk APL. The intermediate-risk group had higher early mortality risk than the low-risk group.
Collapse
|
7
|
Yousefnia S. A comprehensive review on miR-153: Mechanistic and controversial roles of miR-153 in tumorigenicity of cancer cells. Front Oncol 2022; 12:985897. [PMID: 36158686 PMCID: PMC9500380 DOI: 10.3389/fonc.2022.985897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
miRNAs play a crucial role in regulating genes involved in cancer progression. Recently, miR-153 has been mainly well-known as a tumor suppressive miRNA modulating genes in proliferation, metastasis, EMT, angiogenesis and drug resistance ability of a variety types of cancer. Mechanistic activity of miR-153 in tumorigenicity has not been fully reviewed. This manuscript presents a comprehensive review on the tumor suppressive activity of miR-153 as well as introducing the controversial role of miR-153 as an oncogenic miRNA in cancer. Furthermore, it summarizes all potential non-coding RNAs such as long non-coding RNAs (LncRNAs), transcribed ultra-conserved regions (T-UCRs) and circular RNAs (CircRNAs) targeting and sponging miR-153. Understanding the critical role of miR-153 in cell growth, metastasis, angiogenesis and drug resistance ability of cancer cells, suggests miR-153 as a potential prognostic biomarker for detecting cancer as well as providing a novel treatment strategy to combat with several types of cancer.
Collapse
|
8
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|