1
|
Li L, Xu N, Liu J, Chen Z, Liu X, Wang J. m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Front Genet 2022; 13:908976. [PMID: 35836571 PMCID: PMC9274458 DOI: 10.3389/fgene.2022.908976] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Recent studies have shown that n6-methyladenosine (m6A) plays a major role in cardiovascular homeostasis and pathophysiology. These studies have confirmed that m6A methylation affects the pathophysiology of cardiovascular diseases by regulating cellular processes such as differentiation, proliferation, inflammation, autophagy, and apoptosis. Moreover, plenty of research has confirmed that m6A modification can delay the progression of CVD via the post-transcriptional regulation of RNA. However, there are few available summaries of m6A modification regarding CVD. In this review, we highlight advances in CVD-specific research concerning m6A modification, summarize the mechanisms underlying the involvement of m6A modification during the development of CVD, and discuss the potential of m6A modification as a therapeutic target of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Deep sequencing unveils altered cardiac miRNome in congenital heart disease. Mol Genet Genomics 2022; 297:1123-1139. [PMID: 35668131 DOI: 10.1007/s00438-022-01908-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Congenital heart disease (CHD) surges from fetal cardiac dysmorphogenesis and chiefly contributes to perinatal morbidity and cardiovascular disease mortality. A continual rise in prevalence and prerequisite postoperative disease management creates need for better understanding and new strategies to control the disease. The interaction between genetic and non-genetic factors roots the multifactorial status of this disease, which remains incompletely explored. The small non-coding microRNAs (miRs, miRNAs) regulate several biological processes via post-transcriptional regulation of gene expression. Abnormal expression of miRs in developing and adult heart is associated with anomalous cardiac cell differentiation, cardiac dysfunction, and cardiovascular diseases. Here, we attempt to discover the changes in cardiac miRNA transcriptome in CHD patients over those without CHD (non-CHD) and find its role in CHD through functional annotation. This study explores the miRNome in three most commonly occurring CHD subtypes, namely atrial septal defect (ASD), ventricular septal defect (VSD), and tetralogy of fallot (TOF). We found 295 dysregulated miRNAs through high-throughput sequencing of the cardiac tissues. The bioinformatically predicted targets of these differentially expressed miRs were functionally annotated to know they were entailed in cell signal regulatory pathways, profoundly responsible for cell proliferation, survival, angiogenesis, migration and cell cycle regulation. Selective miRs (hsa-miR-221-3p, hsa-miR-218-5p, hsa-miR-873-5p) whose expression was validated by qRT-PCR, have been reported for cardiogenesis, cardiomyocyte proliferation, cardioprotection and cardiac dysfunction. These results indicate that the altered miRNome to be responsible for the disease status in CHD patients. Our data expand the existing knowledge on the epigenetic changes in CHD. In future, characterization of these cardiac-specific miRs will add huge potential to understand cardiac development, function, and molecular pathogenesis of heart diseases with a prospect of epigenetic manipulation for cardiac repair.
Collapse
|
3
|
Jiang Z, Song X, Wei Y, Li Y, Kong D, Sun J. N(6)-methyladenosine-mediated miR-380-3p maturation and upregulation promotes cancer aggressiveness in pancreatic cancer. Bioengineered 2022; 13:14460-14471. [PMID: 35758158 PMCID: PMC9342193 DOI: 10.1080/21655979.2022.2088497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
N(6)-methyladenosine (m6A)-modified microRNAs (miRNAs) are relevant to cancer progression. Also, although the involvement of miR-380-3p in regulating cancer progression in bladder cancer and neuroblastoma has been preliminarily explored, its role in other types of cancer, such as pancreatic cancer (PC), has not been studied. Thus, this study aimed to investigate the role of miR-380-3p in regulating PC progression. Here, through performing Real-Time qPCR, we evidenced that miR-380-3p was significantly upregulated in the clinical pancreatic cancer tissues and cells compared to their normal counterparts. Interestingly, miR-380-3p was enriched with m6A modifications, and elimination of m6A modifications by deleting METTL3 and METTL14 synergistically suppressed miR-380-3p expressions in PC cells. Next, the gain and loss-of-function experiments verified that knockdown of miR-380-3p suppressed cell proliferation, epithelial-mesenchymal transition (EMT), and tumorigenesis in PC cells in vitro and in vivo, whereas miR-380-3p overexpression had opposite effects. Furthermore, the underlying mechanisms were uncovered, and our data suggested that miR-380-3p targeted the 3' untranslated regions (3'UTRs) of PTEN for its inhibition and degradation, resulting in the activation of the downstream Akt signal pathway. Moreover, the rescuing experiments validated that both PTEN overexpression and Akt pathway inhibitor LY294002 abrogated the promoting effects of miR-380-3p overexpression on cancer aggressiveness in PC cells. Collectively, this study firstly investigated the role of the m6A-associated miR-380-3p/PTEN/Akt pathway in regulating PC progression, which provided novel therapeutic and diagnostic biomarkers for this cancer.
Collapse
Affiliation(s)
- Zhijia Jiang
- Department of Hepatopancreatobiliary Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaomeng Song
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yaqing Wei
- Department of Hepatopancreatobiliary Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanxun Li
- Department of Hepatopancreatobiliary Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Degang Kong
- Department of Hepatopancreatobiliary Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Liu C, Gu L, Deng W, Meng Q, Li N, Dai G, Yu S, Fang H. N6-Methyladenosine RNA Methylation in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:887838. [PMID: 35571209 PMCID: PMC9098837 DOI: 10.3389/fcvm.2022.887838] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) modification is the most universal and abundant post-transcriptional modification of eukaryotic RNA and occurs mainly at the consensus motif RR (m6A) CH (R = A or G, H = A, C, or U) in long internal exons, near stop codons, or in the 3' untranslated region (UTR). "Writers," "erasers," and "readers" are responsible for the occurrence, removal, and recognition of m6A modification, respectively. Substantial evidence has shown that m6A RNA modification can exert important functions in physiological and pathological processes. Cardiovascular diseases (CVDs) are a wide array of disorders affecting heart or vessels, including atherosclerosis (AS), hypertension (HT), ischemia/reperfusion (I/R) injury, myocardial infarction (MI), stroke, cardiac hypertrophy, heart failure (HF), and so on. Despite the advances in lipid-lowering drugs, antihypertensives, antiplatelet agents, and anticoagulation therapy, CVDs are still the leading cause of death worldwide. Recent studies have suggested that m6A modification of RNA may contribute to the pathogenesis of CVDs, providing a novel research insight for CVDs. Herein, we provide an up-of-date summarization of the molecular mechanism of m6A and the roles of m6A in different types of CVDs. At last, we propose that m6A might be a potiential biomarker or therapeutic target for CVDs.
Collapse
Affiliation(s)
- Chi Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lei Gu
- Department of Internal Medicine, Shanghai Shende Hospital, Shanghai, China
| | - Wenjuan Deng
- Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qianchao Meng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Li
- Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Guifeng Dai
- Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Suli Yu
- Department of Hand and Upper Extremity Surgery and Limb Function Reconstruction Center, Jing’an District Central Hospital, Shanghai, China
| | - Hong Fang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Ke WL, Huang ZW, Peng CL, Ke YP. m 6A demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered 2022; 13:5443-5452. [PMID: 35176940 PMCID: PMC8974143 DOI: 10.1080/21655979.2022.2030572] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023] Open
Abstract
Reperfusion therapy after acute myocardial infarction can induce myocardial ischemia-reperfusion injury (IRI). Novel evidence has illustrated that N6-methyladenosine (m6A) modification modulates the myocardial IRI progression. Here, our study focuses on the role of m6A methyltransferase fat mass and obesity-associated protein (FTO) in myocardial ischemia/reoxygenation injury and explores potential regulatory mechanisms. Results discovered that FTO down-expressed in myocardial IRI mice and hypoxia/reoxygenation (H/R)-induced cardiomyocytes. Functionally, FTO overexpression attenuated the H/R-induced apoptosis and inflammation of cardiomyocytes. Mechanistically, methylated RNA immunoprecipitation quantitative polymerase chain reaction (MeRIP-qPCR) assay and RIP assay revealed that Yap1 mRNA acted as the target of FTO in cardiomyocytes. Moreover, FTO uninstalled the methylation of Yap1 mRNA, and enforced the stability of Yap1 mRNA. Taken together, our study reveals the role of FTO in H/R-induced myocardial cell injury via m6A-dependent manner, which may provide a new approach to improve myocardial IRI.
Collapse
Affiliation(s)
- Wei-Liang Ke
- Department of Cardiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, P.R. China
| | - Zhi-Wen Huang
- Department of Cardiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, P.R. China
| | - Chun-Ling Peng
- Physical Examination Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, P.R. China
| | - Yi-Ping Ke
- Physical Examination Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, P.R. China
| |
Collapse
|
6
|
Wang X, Li Y, Li J, Li S, Wang F. Mechanism of METTL3-Mediated m6A Modification in Cardiomyocyte Pyroptosis and Myocardial Ischemia–Reperfusion Injury. Cardiovasc Drugs Ther 2022; 37:435-448. [PMID: 35066738 DOI: 10.1007/s10557-021-07300-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (MI/R) injury is a complicated pathophysiological process associated with cardiomyocyte pyroptosis. Methyltransferase-like protein 3 (METTL3) catalyzes the formation of N6-methyl-adenosine (m6A) and participates in various biological processes. This study probed into the mechanism of METTL3 in cardiomyocyte pyroptosis in MI/R injury. METHODS A rat model of MI/R was established. Rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment for the establishment of a cell model in vitro. METTL3 expression in myocardial tissues of MI/R rats and OGD/R-treated cardiomyocytes was determined using RT-qPCR and Western blot. The pathological changes of rat myocardial tissues were observed using hematoxylin and eosin staining. The positive expression of NLRP3 in myocardial tissues or cardiomyocytes was observed through immunohistochemistry or immunofluorescence. The activity of caspase-1 was measured using the colorimetric method. The expressions of GSDMD and cleaved caspase-1, as well as the levels of IL-1β and IL-18 in rat myocardial tissues or cardiomyocytes were determined. m6A modification level was quantified. The binding relationship between pri-miR-143-3p and DGCR8 and the enrichment of m6A on pri-miR-143-3p were detected. The binding relationship between miR-143-3p and protein kinase C epsilon (PRKCE) was verified. RESULTS METTL3 expression was elevated in MI/R rats and OGD/R cardiomyocytes. METTL3 silencing alleviated myocardial injury, reduced the number of NLRP3-positive cardiomyocytes, suppressed caspase-1 activity, decreased the protein levels of GSDMD-N and cleaved caspase-1, and decreased IL-1β and IL-18 levels. METTL3 increased the total m6A level in MI/R rats and injured cardiomyocytes, promoted DGCR8 binding to pri-miR-143-3p, and enhanced miR-143-3p expression. miR-143-3p suppressed PRKCE transcription, and miR-143-3p overexpression reversed the inhibitory effect of METTL3 silencing on cardiomyocyte pyroptosis. CONCLUSION METTL3 promoted DGCR8 binding to pri-miR-143-3p through m6A modification, thus enhancing miR-143-3p expression to inhibit PRKCE transcription and further aggravating cardiomyocyte pyroptosis and MI/R injury.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yi Li
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing Hospital, Beijing, 100730, China
| | - Jiahan Li
- The First Mobile Corps of People's Armed Police, Beijing, 101100, China
| | - Shiguo Li
- Department of Structural Heart Disease Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Fang Wang
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|