1
|
Chen M, Liu J, Lin J, Zhuang K, Shan Y, Tiwari S, Jiang L, Zhang J. Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review. Gels 2025; 11:188. [PMID: 40136893 PMCID: PMC11942346 DOI: 10.3390/gels11030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Postoperative adhesions are common complications following surgery, often accompanied by pain and inflammation that significantly diminish patients' quality of life. Moreover, managing postoperative adhesions incurs substantial cost, imposing a considerable financial burden on both patients and healthcare systems. Traditional anti-adhesion materials are confronted with limitations, such as inadequate tissue adherence in a moist environment and poor degradability, underscoring the urgent need for more effective solutions. Recently, polysaccharide-based hydrogels have received considerable attention for their potential in preventing postoperative adhesions. The hydrogels not only facilitate wound healing but also effectively reduce inflammation, providing a promising approach to preventing postoperative adhesions. This review provides an extensive analysis of the progress made in the development of polysaccharide-based hydrogels for postoperative anti-adhesion therapy. It highlights their principal benefits, outlines future research trajectories, and addresses the ongoing challenges that need to be overcome.
Collapse
Affiliation(s)
- Mengyao Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
| | - Jialin Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhong Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhuang
- Pharma Solutions, Nutrition and Health, BASF (China) Company, Ltd., 333 Jiang Xin Sha Road, Shanghai 200137, China
| | - Yudong Shan
- Hangzhou Zhongmeihuadong Pharmaceutical Co., Ltd., 866 Moganshan Road, Hangzhou 310011, China
| | - Sandip Tiwari
- Pharma Solutions, BASF Corp., 500 White Plains Rd, Tarrytown, NY 10591, USA
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|