1
|
Hayashi K, Hasegawa T, Tanaka T. Fenestrated closure of an atrial septal defect for left ventricular diastolic dysfunction in an early infant with hypertrophic cardiomyopathy. Cardiol Young 2024:1-3. [PMID: 39568203 DOI: 10.1017/s1047951124036102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Left ventricular diastolic dysfunction is associated with poor prognosis in patients with hypertrophic cardiomyopathy and CHD. We report the case of an infant concomitant with hypertrophic cardiomyopathy, an atrial septal defect, and left ventricular diastolic dysfunction, who was successfully managed with fenestrated closure of the atrial septal defect.
Collapse
Affiliation(s)
- Ken Hayashi
- Department of Pediatrics, Kobe City Center General Hospital, Kobe, Japan
| | - Tomomi Hasegawa
- Department of Pediatric Intensive Care, Kobe Children's Hospital, Kobe, Japan
| | | |
Collapse
|
2
|
Vysotskaya Z, Chidipi B, Rodgers JL, Tang X, Samal E, Kolliputi N, Mohapatra S, Bennett ES, Panguluri SK. Elevated potassium outward currents in hyperoxia treated atrial cardiomyocytes. J Cell Physiol 2017; 233:4317-4326. [PMID: 29139549 DOI: 10.1002/jcp.26263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Supplementation of 100% oxygen is a very common intervention in intensive care units (ICU) and critical care centers for patients with dysfunctional lung and lung disorders. Although there is advantage in delivering sufficient levels of oxygen, hyperoxia is reported to be directly associated with increasing in-hospital deaths. Our previous studies reported ventricular and electrical remodeling in hyperoxia treated mouse hearts, and in this article, for the first time, we are investigating the effects of hyperoxia on atrial electrophysiology using whole-cell patch-clamp electrophysiology experiments along with assessment of Kv1.5, Kv4.2, and KChIP2 transcripts and protein profiles using real-time quantitative RT-PCR and Western blotting. Our data showed that induction of hyperoxia for 3 days in mice showed larger outward potassium currents with shorter action potential durations (APD). This increase in current densities is due to significant increase in ultrarapid delayed rectifier outward K+ currents (IKur ) and rapidly activating, rapidly inactivating transient outward K+ current (Ito ) densities. We also observed a significant increase in both transcripts and protein levels of Kv1.5 and KChIP2 in hyperoxia treated atrial cardiomyocytes, whereas no significant change was observed in Kv4.2 transcripts or protein. The data presented here further support our previous findings that hyperoxia induces not only ventricular remodeling, but also atrial electrical remodeling.
Collapse
Affiliation(s)
- Zhanna Vysotskaya
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Bojjibabu Chidipi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jennifer L Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Xiaolan Tang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Eva Samal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Subhra Mohapatra
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Eric S Bennett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| |
Collapse
|