1
|
Ekmejian AA, Carpenter HJ, Ciofani JL, Gray BHM, Allahwala UK, Ward M, Escaned J, Psaltis PJ, Bhindi R. Advances in the Computational Assessment of Disturbed Coronary Flow and Wall Shear Stress: A Contemporary Review. J Am Heart Assoc 2024; 13:e037129. [PMID: 39291505 DOI: 10.1161/jaha.124.037129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coronary artery blood flow is influenced by various factors including vessel geometry, hemodynamic conditions, timing in the cardiac cycle, and rheological conditions. Multiple patterns of disturbed coronary flow may occur when blood flow separates from the laminar plane, associated with inefficient blood transit, and pathological processes modulated by the vascular endothelium in response to abnormal wall shear stress. Current simulation techniques, including computational fluid dynamics and fluid-structure interaction, can provide substantial detail on disturbed coronary flow and have advanced the contemporary understanding of the natural history of coronary disease. However, the clinical application of these techniques has been limited to hemodynamic assessment of coronary disease severity, with the potential to refine the assessment and management of coronary disease. Improved computational efficiency and large clinical trials are required to provide an incremental clinical benefit of these techniques beyond existing tools. This contemporary review is a clinically relevant overview of the disturbed coronary flow and its associated pathological consequences. The contemporary methods to assess disturbed flow are reviewed, including clinical applications of these techniques. Current limitations and future opportunities in the field are also discussed.
Collapse
Affiliation(s)
- Avedis Assadour Ekmejian
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Harry James Carpenter
- Vascular Research Centre Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide Australia
| | - Jonathan Laurence Ciofani
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | | | - Usaid Khalil Allahwala
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Michael Ward
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| | - Javier Escaned
- Department of Cardiology Hospital Universitario Clinico San Carlos Madrid Spain
| | - Peter James Psaltis
- Vascular Research Centre Lifelong Health Theme, South Australia Health and Medical Research Institute Adelaide Australia
- Adelaide Medical School The University of Adelaide Adelaide Australia
- Department of Cardiology Central Adelaide Local Health Network Adelaide Australia
| | - Ravinay Bhindi
- Department of Cardiology Royal North Shore Hospital Sydney Australia
- University of Sydney Northern Clinical School Sydney Australia
| |
Collapse
|
2
|
Dadras R, Jabbari A, Asl NK, Soltani M, Rafiee F, Parsaee M, Golchin S, Pouraliakbar H, Sadeghipour P, Alimohammadi M. In-silico investigations of haemodynamic parameters for a blunt thoracic aortic injury case. Sci Rep 2023; 13:8355. [PMID: 37221220 DOI: 10.1038/s41598-023-35585-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023] Open
Abstract
Accounting for 1.5% of thoracic trauma, blunt thoracic aortic injury (BTAI) is a rare disease with a high mortality rate that nowadays is treated mostly via thoracic endovascular aortic repair (TEVAR). Personalised computational models based on fluid-solid interaction (FSI) principals not only support clinical researchers in studying virtual therapy response, but also are capable of predicting eventual outcomes. The present work studies the variation of key haemodynamic parameters in a clinical case of BTAI after successful TEVAR, using a two-way FSI model. The three-dimensional (3D) patient-specific geometries of the patient were coupled with three-element Windkessel model for both prior and post intervention cases, forcing a correct prediction of blood flow over each section. Results showed significant improvement in velocity and pressure distribution after stenting. High oscillatory, low magnitude shear (HOLMES) regions require careful examination in future follow-ups, since thrombus formation was confirmed in some previously clinically reported cases of BTAI treated with TEVAR. The strength of swirling flows along aorta was also damped after stent deployment. Highlighting the importance of haemodynamic parameters in case-specific therapies. In future studies, compromising motion of aortic wall due to excessive cost of FSI simulations can be considered and should be based on the objectives of studies to achieve a more clinical-friendly patient-specific CFD model.
Collapse
Affiliation(s)
- Rezvan Dadras
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran.
| | - Alireza Jabbari
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran
| | - Narges Kamaei Asl
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran
| | - Farnaz Rafiee
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Parsaee
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Golchin
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Pouraliakbar
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Sadeghipour
- Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Alimohammadi
- Department of Mechanical Engineering, K. N. Toosi Univeristy of Technology, Tehran, Iran.
| |
Collapse
|
3
|
A Detailed Study to Discover the Trade between Left Atrial Blood Flow, Expression of Calcium-Activated Potassium Channels and Valvular Atrial Fibrillation. Cells 2022; 11:cells11091383. [PMID: 35563689 PMCID: PMC9103658 DOI: 10.3390/cells11091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The present study aimed to explore the correlation between calcium-activated potassium channels, left atrial flow field mechanics, valvular atrial fibrillation (VAF), and thrombosis. The process of transforming mechanical signals into biological signals has been revealed, which offers new insights into the study of VAF. Methods: Computational fluid dynamics simulations use numeric analysis and algorithms to compute flow parameters, including turbulent shear stress (TSS) and wall pressure in the left atrium (LA). Real-time PCR and western blotting were used to detect the mRNA and protein expression of IKCa2.3/3.1, ATK1, and P300 in the left atrial tissue of 90 patients. Results: In the valvular disease group, the TSS and wall ressure in the LA increased, the wall pressure increased in turn in all disease groups, mainly near the mitral valve and the posterior portion of the LA, the increase in TSS was the most significant in each group near the mitral valve, and the middle and lower part of the back of the LA and the mRNA expression and protein expression levels of IKCa2.3/3.1, AKT1, and P300 increased (p < 0.05) (n = 15). The present study was preliminarily conducted to elucidate whether there might be a certain correlation between IKCa2.3 and LA hemodynamic changes. Conclusions: The TSS and wall pressure changes in the LA are correlated with the upregulation of mRNA and protein expression of IKCa2.3/3.1, AKT1, and P300.
Collapse
|
4
|
Wen J, Wu W, Peng L. 'Heart-like' cross-sectional shape can better improve the hemodynamics in spiral laminar flow graft for small-caliber bypass application: a numerical study. Comput Methods Biomech Biomed Engin 2021; 25:1487-1498. [PMID: 34937461 DOI: 10.1080/10255842.2021.2017905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small-caliber grafts remain disappointed in the long-term bypass surgeries of coronary and peripheral arterial diseases. In order to improve the hemodynamics in small-caliber artery bypass grafts (ABGs), an improved spiral laminar flow (improved-SLF) graft with a 'heart-like' cross-sectional shape was proposed and verified by computational fluid dynamics simulation in this study. The results show that such graft can indeed induce a spiral flow and enhance the WSS distribution on the graft section. Furthermore, the helically distributed ribbon of unfavorable WSS observed in the original SLF graft was eliminated in the improved-SLF graft due to its smoothed and gentle helical ridge. On the other hand, improved-SLF ABG improved the WSS distribution in the distal anastomosis as well, because it maintained the strength of spiral flow when entering the anastomosis region. Finally, the improved-SLF ABG slightly increased the pressure drop along the bypass due to its small change of the general graft structure. As a proof-of-concept study, it can be concluded that improved-SLF graft can not only evenly enhance the WSS distribution in the graft section, but also improve the hemodynamic environment in the distal anastomosis without significantly increasing the pressure drop along the bypass, indicating such new helical-type graft may be more suitable to be used in the small-caliber graft bypass surgeries.
Collapse
Affiliation(s)
- Jun Wen
- Department of Mechanics, Institute of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, China
| | - Wenqing Wu
- Department of Mathematics, School of Science, Southwest University of Science and Technology, Mianyang, China
| | - Liqing Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Effect of Anastomosis Angles on Retrograde Perfusion and Hemodynamics of Hybrid Treatment for Thoracoabdominal Aortic Aneurysm. Ann Vasc Surg 2021; 79:298-309. [PMID: 34648850 DOI: 10.1016/j.avsg.2021.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 08/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hemodynamic effects on the retrograde visceral reconstruction (RVR) for thoracoabdominal aortic aneurysms treatment by anastomotic angle remains unclear. This study aims to qualitatively and quantitatively investigate the effects of different anastomotic angles on hemodynamics and patency. METHODS Three RVR models with 45°, 60° and 90° anastomotic angles were reconstructed respectively by manipulating apostoperative patient-specific model. The manipulated models of the RVRs were numerically simulated and analyzed in terms of hemodynamics including theinstant and cumulative patency, flow pattern and indicators based on wall shear stress (WSS). RESULTS Although a smaller anastomotic angle may decrease the patency rate of common iliac arteries, it can improve the visceral perfusion during a cardiac cycle. More importantly, RVR with the smallest anastomotic angle experienced a minimal low time-averaged wall shear stress, high oscillatory shear index and relative residence time in the anastomosis region, whereas the largest anastomotic angle can introduce more unfavorable WSS in the graft trunk. Furthermore, a spiral flow pattern was observed in the proximal graft trunk of all three models, where no high-risk shear distribution was detected in this region. CONCLUSION A smaller anastomotic angle may have more benefits of hemodynamic environment in RVR, especially the WSS distribution and flow pattern in the graft trunk. We may also suggest that additional stents or an extended cuff for the graft can be used to induce spiral flow intentionally, which can further improve local hemodynamic environment and long-term prognosis.
Collapse
|
6
|
Numerical study on flow topology and hemodynamics in tortuous coronary artery with symmetrical and asymmetrical stenosis. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Li Y, Shi G, Du J, Wang J, Bian P. Analysis and preparation of rotational flow mechanism of artificial blood vessel with spiral folds on inner wall. Biomech Model Mechanobiol 2018; 18:411-423. [DOI: 10.1007/s10237-018-1092-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
|
8
|
ZHENG QUAN, CHU ZHAOWEI, LI XIAOMING, KANG HONGYAN, YANG XIAO, FAN YUBO. EFFECTS OF AQUEOUS MEDIUM, TWEEN-20 AND FLOW ON THE STABILITY OF SIROLIMUS. J MECH MED BIOL 2017; 17:1750039. [DOI: 10.1142/s0219519417500397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Sirolimus-eluting stents have been widely used in the treatment of coronary artery disease. Prior to the clinical application, the in vitro drug release test is a mandatory requirement for the quality control of sirolimus-eluting stents. How to maintain the stability of sirolimus in the release medium is an important issue throughout the drug release research. In this study, the stability tests of sirolimus in three aqueous media (ultrapure water (UPW), normal saline (NS) and phosphate-buffered saline (PBS, pH 7.4)) were carried out. It was found that the half-lives of sirolimus in UPW, NS and PBS (pH 7.4) were, respectively, 111.8, 43.6 and 11.5[Formula: see text]h. Tween-20 was then added to the above-mentioned three aqueous media and was shown to improve the solubility and stability of sirolimus in aqueous solutions. Under static conditions, the half-life value for sirolimus was significantly increased in the presence of Tween-20 (UPW, 3.5-fold; NS, 2.0-fold; PBS (pH 7.4), 2.7-fold). The effect of solution flow on the stability of sirolimus was also investigated in a flow loop apparatus to mimic vessel-like flow conditions. There was a significant decrease in the stability of sirolimus in aqueous media with the increase of flow rate. The results suggest that aqueous solution supplemented with Tween-20 could be used as the release medium for sirolimus-eluting stents, and that the circulation of the release medium should be controlled at low flow rate.
Collapse
Affiliation(s)
- QUAN ZHENG
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - ZHAOWEI CHU
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - XIAOMING LI
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - HONGYAN KANG
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - XIAO YANG
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - YUBO FAN
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, P. R. China
| |
Collapse
|
9
|
Bioinspired helical graft with taper to enhance helical flow. J Biomech 2016; 49:3643-3650. [DOI: 10.1016/j.jbiomech.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/23/2022]
|
10
|
Spiral Laminar Flow: a Survey of a Three-Dimensional Arterial Flow Pattern in a Group of Volunteers. Eur J Vasc Endovasc Surg 2016; 52:674-680. [DOI: 10.1016/j.ejvs.2016.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/16/2016] [Indexed: 11/18/2022]
|
11
|
Physiological Significance of Helical Flow in the Arterial System and its Potential Clinical Applications. Ann Biomed Eng 2014; 43:3-15. [DOI: 10.1007/s10439-014-1097-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/16/2014] [Indexed: 01/12/2023]
|
12
|
Chiastra C, Morlacchi S, Gallo D, Morbiducci U, Cárdenes R, Larrabide I, Migliavacca F. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J R Soc Interface 2013; 10:20130193. [PMID: 23676893 DOI: 10.1098/rsif.2013.0193] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the relevant phenomenon associated with in-stent restenosis in coronary arteries is an altered haemodynamics in the stented region. Computational fluid dynamics (CFD) offers the possibility to investigate the haemodynamics at a level of detail not always accessible within experimental techniques. CFD can quantify and correlate the local haemodynamics structures which might lead to in-stent restenosis. The aim of this work is to study the fluid dynamics of realistic stented coronary artery models which replicate the complete clinical procedure of stent implantation. Two cases of pathologic left anterior descending coronary arteries with their bifurcations are reconstructed from computed tomography angiography and conventional coronary angiography images. Results of wall shear stress and relative residence time show that the wall regions more prone to the risk of restenosis are located next to stent struts, to the bifurcations and to the stent overlapping zone for both investigated cases. Considering a bulk flow analysis, helical flow structures are generated by the curvature of the zone upstream from the stent and by the bifurcation regions. Helical recirculating microstructures are also visible downstream from the stent struts. This study demonstrates the feasibility to virtually investigate the haemodynamics of patient-specific coronary bifurcation geometries.
Collapse
Affiliation(s)
- Claudio Chiastra
- Chemistry, Materials and Chemical Engineering Department, Politecnico di Milano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|