1
|
Adhami M, Picco CJ, Detamornrat U, Anjani QK, Cornelius VA, Robles-Martinez P, Margariti A, Donnelly RF, Domínguez-Robles J, Larrañeta E. Clopidogrel-loaded vascular grafts prepared using digital light processing 3D printing. Drug Deliv Transl Res 2024; 14:1693-1707. [PMID: 38051475 PMCID: PMC11052781 DOI: 10.1007/s13346-023-01484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
The leading cause of death worldwide and a significant factor in decreased quality of life are the cardiovascular diseases. Endovascular operations like angioplasty, stent placement, or atherectomy are often used in vascular surgery to either dilate a narrowed blood artery or remove a blockage. As an alternative, a vascular transplant may be utilised to replace or bypass a dysfunctional or blocked blood vessel. Despite the advancements in endovascular surgery and its popularisation over the past few decades, vascular bypass grafting remains prevalent and is considered the best option for patients in need of long-term revascularisation treatments. Consequently, the demand for synthetic vascular grafts composed of biocompatible materials persists. To address this need, biodegradable clopidogrel (CLOP)-loaded vascular grafts have been fabricated using the digital light processing (DLP) 3D printing technique. A mixture of polylactic acid-polyurethane acrylate (PLA-PUA), low molecular weight polycaprolactone (L-PCL), and CLOP was used to achieve the required mechanical and biological properties for vascular grafts. The 3D printing technology provides precise detail in terms of shape and size, which lead to the fabrication of customised vascular grafts. The fabricated vascular grafts were fully characterised using different techniques, and finally, the drug release was evaluated. Results suggested that the performed 3D-printed small-diameter vascular grafts containing the highest CLOP cargo (20% w/w) were able to provide a sustained drug release for up to 27 days. Furthermore, all the CLOP-loaded 3D-printed materials resulted in a substantial reduction of the platelet deposition across their surface compared to the blank materials containing no drug. Haemolysis percentage for all the 3D-printed samples was lower than 5%. Moreover, 3D-printed materials were able to provide a supportive environment for cellular attachment, viability, and growth. A substantial increase in cell growth was detected between the blank and drug-loaded grafts.
Collapse
Affiliation(s)
- Masoud Adhami
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
2
|
A new sponge-type hydrogel based on hyaluronic acid and poly(methylvinylether-alt-maleic acid) as a 3D platform for tumor cell growth. Int J Biol Macromol 2020; 165:2528-2540. [PMID: 33098901 DOI: 10.1016/j.ijbiomac.2020.10.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
A new sponge-type hydrogel was obtained by cross-linking hyaluronic acid (HA) and poly(methylvinylether-alt-maleic acid) P(MVE-alt-MA) through a solvent-free thermal method. The sponge-type hydrogel was characterized and checked as a support for cell growth. The influence of concentration and weight ratio of polymers on the morphology and hydrogel stability was investigated. The total polymers concentration of 3% (w/w) and the weight ratio of 1:1 were optimal for the synthesis of a stable hydrogel (HA3P50) and to promote cell proliferation. The swelling measurements revealed a high-water absorption capacity of the hydrogel in basic medium. Diphenhydramine (DPH), lidocaine (Lid) and propranolol (Prop) were loaded within the hydrogel as a model drugs to investigate the ability of drug transport and release. In vitro studies revealed that HA3P50 hydrogel promoted the adhesion and proliferation of human hepatocellular carcinoma cell line HepG2, providing a good support for 3D cell culture to obtain surrogate tumor scaffold suitable for preclinical anti-cancer drug screening.
Collapse
|
3
|
Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers (Basel) 2018; 10:E1379. [PMID: 30961303 PMCID: PMC6401754 DOI: 10.3390/polym10121379] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
The oral route is a popular and convenient means of drug delivery. However, despite its advantages, it also has challenges. Many drugs are not suitable for oral delivery due to: first pass metabolism; less than ideal properties; and side-effects of treatment. Additionally, oral delivery relies heavily on patient compliance. Implantable drug delivery devices are an alternative system that can achieve effective delivery with lower drug concentrations, and as a result, minimise side-effects whilst increasing patient compliance. This article gives an overview of classification of these drug delivery devices; the mechanism of drug release; the materials used for manufacture; the various methods of manufacture; and examples of clinical applications of implantable drug delivery devices.
Collapse
Affiliation(s)
- Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|