1
|
Pyrpyris N, Dimitriadis K, Iliakis P, Theofilis P, Beneki E, Terentes-Printzios D, Sakalidis A, Antonopoulos A, Aznaouridis K, Tsioufis K. Hypothermia for Cardioprotection in Acute Coronary Syndrome Patients: From Bench to Bedside. J Clin Med 2024; 13:5390. [PMID: 39336877 PMCID: PMC11432135 DOI: 10.3390/jcm13185390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Early revascularization for patients with acute myocardial infarction (AMI) is of outmost importance in limiting infarct size and associated complications, as well as for improving long-term survival and outcomes. However, reperfusion itself may further damage the myocardium and increase the infarct size, a condition commonly recognized as myocardial reperfusion injury. Several strategies have been developed for limiting the associated with reperfusion myocardial damage, including hypothermia. Hypothermia has been shown to limit the degree of infarct size increase, when started before reperfusion, in several animal models. Systemic hypothermia, however, failed to show any benefit, due to adverse events and potentially insufficient myocardial cooling. Recently, the novel technique of intracoronary selective hypothermia is being tested, with preclinical and clinical results being of particular interest. Therefore, in this review, we will describe the pathophysiology of myocardial reperfusion injury and the cardioprotective mechanics of hypothermia, report the animal and clinical evidence in both systemic and selective hypothermia and discuss the potential future directions and clinical perspectives in the context of cardioprotection for myocardial reperfusion injury.
Collapse
Affiliation(s)
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (N.P.); (P.I.); (P.T.); (E.B.); (D.T.-P.); (A.S.); (A.A.); (K.A.); (K.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Mir A, Rahman MF, Ragab KM, Fathallah AH, Daloub S, Alwifati N, Hagrass AI, Nourelden AZ, Elsayed SM, Kamal I, Elhady MM, Khan R. Efficacy and Safety of Therapeutic Hypothermia as an Adjuvant Therapy for Percutaneous Coronary Intervention in Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Ther Hypothermia Temp Manag 2024; 14:152-171. [PMID: 37792341 DOI: 10.1089/ther.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
The study aims to compare the use of hypothermia in patients with myocardial infarction (MI) undergoing percutaneous coronary intervention (PCI) with control. We systematically searched four electronic databases until March 2022. The inclusion criteria were any study design that compared hypothermia in patients with MI undergoing PCI with control. The risk of bias assessment of the included randomized controlled trials was conducted through Cochrane Tool, while the quality of the included cohort studies was assessed by the NIH tool. The meta-analysis was performed on RevMan. A total of 19 studies were entered. Regarding the mortality, there were nonsignificant differences between hypothermia and control (odds ratio [OR] = 1.06, 95% confidence interval [CI] 0.75 to 1.50, p = 0.73). There was also no significant difference between the control and hypothermia in recurrent MI (OR = 1.21, 95% CI 0.64 to 2.30, p = 0.56). On the other hand, the analysis showed a significant favor for hypothermia over the control infarct size (mean difference = -1.76, 95% CI -3.04 to -0.47, p = 0.007), but a significant favor for the control over hypothermia in the overall bleeding complications (OR = 1.88, 95% CI 1.11 to 3.18, p = 0.02). Compared with the control, hypothermia reduced the infarct size of the heart, but this finding was not consistent across studies. However, the control had lower rates of bleeding problems. The other outcomes, such as death and the incidence of recurrent MI, were similar between the two groups.
Collapse
Affiliation(s)
- Ali Mir
- Department of Internal Medicine, University at Buffalo, Buffalo, New York, USA
| | | | | | | | - Shaden Daloub
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Nader Alwifati
- Department of Internal Medicine, Rochester General Hospital, Rochester, New York, USA
| | | | | | | | - Ibrahim Kamal
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Raheel Khan
- Department of Internal Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Hypothermia as an Adjunctive Therapy to Percutaneous Intervention in ST-Elevation Myocardial Infarction: A Systematic Review and Meta-Analysis of Randomized Control Trials. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 47:8-15. [PMID: 36115819 DOI: 10.1016/j.carrev.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In the setting of acute ST-elevation myocardial infarction (STEMI), several randomized control trials (RCTs) suggested a potential benefit with the use of therapeutic hypothermia (TH). However, results from previous studies are contradictory. METHOD We performed a comprehensive literature search for studies that evaluated the efficacy and safety of adjunctive TH compared to the standard percutaneous coronary intervention (PCI) in awake patients with STEMI. The primary outcomes were the infarct size (IS) and microvascular obstruction (MVO) assessed by cardiac imaging at the end of follow-up. The secondary outcomes were major adverse cardiovascular events (MACE), procedure-related complications, and door-to-balloon time. Relative risk (RR) or the mean difference (MD) and corresponding 95 % confidence intervals (CIs) were calculated using the random-effects model. RESULTS A total of 10 RCTs, including 706 patients were included. As compared to standard PCI, TH was not associated with a statistically significant improvement in the IS (MD: -0.87 %, 95%CI: -2.97, 1.23; P = 0.42) or in the MVO (MD: 0.11 %, 95%CI: -0.06, 0.27; P = 0.21). MACE and its components were comparable between the two groups. However, the TH approach was associated with an increased risk of infection and prolonged door-to-balloon time. Furthermore, there was a trend in the TH group toward an increased incidence of stent thrombosis and paroxysmal atrial fibrillation. CONCLUSIONS According to our meta-analysis of published RCTs, TH is not beneficial in awake patients with STEMI and has a marginal safety profile with potential for care delays. Larger-scale RCTs are needed to further clarify our results.
Collapse
|
4
|
A Novel Reperfusion Strategy for Primary Percutaneous Coronary Intervention in Patients with Acute ST-Segment Elevation Myocardial Infarction: A Prospective Case Series. J Clin Med 2023; 12:jcm12020433. [PMID: 36675362 PMCID: PMC9864309 DOI: 10.3390/jcm12020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ischemia reperfusion injury (IRI) remains a major problem in patients with acute ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). We have developed a novel reperfusion strategy for PCI and named it "volume-controlled reperfusion (VCR)". The aim of the current study was to assess the safety and feasibility of VCR in patients with STEMI. METHODS Consecutive patients admitted to Beijing Chaoyang Hospital with STEMI were prospectively enrolled. The feasibility endpoint was procedural success. The safety endpoints included death from all causes, major vascular complications, and major adverse cardiac event (MACE), i.e., a composite of cardiac death, myocardial reinfarction, target vessel revascularization (TVR), and heart failure. RESULTS A total of 30 patients were finally included. Procedural success was achieved in 28 (93.3%) patients. No patients died during the study and no major vascular complications or MACE occurred during hospitalization. With the exception of one patient (3.3%) who underwent TVR three months after discharge, no patient encountered death (0.0%), major vascular complications (0.0%), or and other MACEs (0.0%) during the median follow-up of 16 months. CONCLUSION The findings of the pilot study suggest that VCR has favorable feasibility and safety in patients with STEMI. Further larger randomized trials are required to evaluate the effectiveness of VCR in STEMI patients.
Collapse
|
5
|
Adipose Lipolysis Regulates Cardiac Glucose Uptake and Function in Mice under Cold Stress. Int J Mol Sci 2021; 22:ijms222413361. [PMID: 34948160 PMCID: PMC8703875 DOI: 10.3390/ijms222413361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/04/2023] Open
Abstract
The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-β, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.
Collapse
|
6
|
Acute Cardiac Unloading and Recovery: Proceedings of the 5th Annual Acute Cardiac Unloading and REcovery (A-CURE) symposium held on 14 December 2020. Interv Cardiol 2021; 16:1-3. [PMID: 33986827 PMCID: PMC8108564 DOI: 10.15420/icr.2021.s2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
van Wincoop M, de Bijl-Marcus K, Lilien M, van den Hoogen A, Groenendaal F. Effect of therapeutic hypothermia on renal and myocardial function in asphyxiated (near) term neonates: A systematic review and meta-analysis. PLoS One 2021; 16:e0247403. [PMID: 33630895 PMCID: PMC7906340 DOI: 10.1371/journal.pone.0247403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Therapeutic hypothermia (TH) is a well-established neuroprotective therapy applied in (near) term asphyxiated infants. However, little is known regarding the effects of TH on renal and/or myocardial function. OBJECTIVES To describe the short- and long-term effects of TH on renal and myocardial function in asphyxiated (near) term neonates. METHODS An electronic search strategy incorporating MeSH terms and keywords was performed in October 2019 and updated in June 2020 using PubMed and Cochrane databases. Inclusion criteria consisted of a RCT or observational cohort design, intervention with TH in a setting of perinatal asphyxia and available long-term results on renal and myocardial function. We performed a meta-analysis and heterogeneity and sensitivity analyses using a random effects model. Subgroup analysis was performed on the method of cooling. RESULTS Of the 107 studies identified on renal function, 9 were included. None of the studies investigated the effects of TH on long-term renal function after perinatal asphyxia. The nine included studies described the effect of TH on the incidence of acute kidney injury (AKI) after perinatal asphyxia. Meta-analysis showed a significant difference between the incidence of AKI in neonates treated with TH compared to the control group (RR = 0.81; 95% CI 0.67-0.98; p = 0.03). No studies were found investigating the long-term effects of TH on myocardial function after neonatal asphyxia. Possible short-term beneficial effects were presented in 4 out of 5 identified studies, as observed by significant reductions in cardiac biomarkers and less findings of myocardial dysfunction on ECG and cardiac ultrasound. CONCLUSIONS TH in asphyxiated neonates reduces the incidence of AKI, an important risk factor for chronic kidney damage, and thus is potentially renoprotective. No studies were found on the long-term effects of TH on myocardial function. Short-term outcome studies suggest a cardioprotective effect.
Collapse
Affiliation(s)
- Maureen van Wincoop
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Karen de Bijl-Marcus
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Marc Lilien
- Department of Pediatric Nephrology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Agnes van den Hoogen
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Cardioprotective effect of combination therapy by mild hypothermia and local or remote ischemic preconditioning in isolated rat hearts. Sci Rep 2021; 11:265. [PMID: 33431942 PMCID: PMC7801421 DOI: 10.1038/s41598-020-79449-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/30/2020] [Indexed: 01/14/2023] Open
Abstract
A multitargeted strategy to treat the consequences of ischemia and reperfusion (IR) injury in acute myocardial infarction may add cardioprotection beyond reperfusion therapy alone. We investigated the cardioprotective effect of mild hypothermia combined with local ischemic preconditioning (IPC) or remote ischemic conditioning (RIC) on IR injury in isolated rat hearts. Moreover, we aimed to define the optimum timing of initiating hypothermia and evaluate underlying cardioprotective mechanisms. Compared to infarct size in normothermic controls (56 ± 4%), mild hypothermia during the entire or final 20 min of the ischemic period reduced infarct size (34 ± 2%, p < 0.01; 35 ± 5%, p < 0.01, respectively), while no reduction was seen when hypothermia was initiated at reperfusion (51 ± 4%, p = 0.90). In all groups with effect of mild hypothermia, IPC further reduced infarct size. In contrast, we found no additive effect on infarct size between hypothermic controls (20 ± 3%) and the combination of mild hypothermia and RIC (33 ± 4%, p = 0.09). Differences in temporal lactate dehydrogenase release patterns suggested an anti-ischemic effect by mild hypothermia, while IPC and RIC preferentially targeted reperfusion injury. In conclusion, additive underlying mechanisms seem to provide an additive effect of mild hypothermia and IPC, whereas the more clinically applicable RIC does not add cardioprotection beyond mild hypothermia.
Collapse
|
9
|
Bashtawi Y, Almuwaqqat Z. Therapeutic Hypothermia in STEMI. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2020; 29:77-84. [PMID: 32807668 DOI: 10.1016/j.carrev.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
In this review article we tried to find an answer to the question, should local coronary hypothermia be a part of the early reperfusion strategy in patients with STEMI to prevent reperfusion injury, no-reflow phenomenon, and to reduce the infarct size and mortality. Hypothermia can save cardiomyocytes if achieved in a timely fashion before reperfusion. Intracoronary hypothermia can be adjunct to PCI by lessening ischemia/reperfusion injury on cardiomyocytes and reduction in infarct size. Reperfusion induced Calcium overload, generation of ROS and subsequent activation of Mitochondrial permeability transition pore (MPT) are major contributors to reperfusion injury. Hypothermia reduces calcium loading of the cell and maintains cellular energy and tissue level glucose which can scavenger ROS. Hypothermia reduces MPT activation and thus reduces infarct size. Systemic cooling trials failed to reduce infarct size, perhaps because the target temperature was not reached fast enough, and it was associated with systemic side effects. The need for rapid induction of hypothermia to <35 °C with the ethical concern of delaying reperfusion while cooling the patient and the inconsistency of endovascular cooling results lead to a belief that endovascular cooling may exceed the acceptable level of invasiveness in the context of other novels cardioprotective, regenerative and reperfusion therapies. Clinical trials showed the safety and feasibility of novel intracoronary hypothermia with rapid induction and maintenance of hypothermia using routine PCI equipment ahead of reperfusion. Two phases of cooling were applied without significant delay in the door to balloon time. Cooling of the coronary artery leads to cooling of its dependant myocardium without affecting adjacent myocardium. Heat transfer occurred by heat conduction during the occlusion phase and heat convention during the reperfusion phase. Fine-tuning of saline temperature and infusion rate helped to improve the protocol. The best duration of hypothermia before and after reperfusion is not known and needs further investigation. A balance between the undoubted cardioprotective effects of hypothermia with iatrogenic prolongation of ischemia time needs to be established. A reduction in infarct size was observed but needs to be validated with large randomized trials. Furthermore, it might be possible to augment the cardioprotective effects of intracoronary hypothermia by combination with other cardioprotective approaches such as antioxidant drugs and afterload reducing agents.
Collapse
Affiliation(s)
- Yazan Bashtawi
- Department of Medicine, King Hussein Cancer Center, Amman, Jordan.
| | - Zakaria Almuwaqqat
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, United States of America
| |
Collapse
|