1
|
Yuan T, Zhao S, Yang J, Niu M, Xu Y. Structural characteristics of β-glucans from various sources and their influences on the short- and long-term starch retrogradation in wheat flour. Int J Biol Macromol 2024; 264:130561. [PMID: 38431011 DOI: 10.1016/j.ijbiomac.2024.130561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Beta-glucans possess the ability of retarding starch retrogradation. However, β-glucans from different sources might show various influences on retrogradation process and the structure-function relationships of β-glucans related to the feature still remains unclear. In the study, the β-glucans from oat (OG), highland barley (HBG), and yeast (YG) were selected. Each β-glucans formed aggregate as observed by atomic force microscopy. OG and HBG with a lower Mw aggregated more obviously and exhibited higher intrinsic and apparent viscosity. The two β-glucans showed more restraining effect on the short-term starch retrogradation in the sol-like test system (RVA) and the long-term starch retrogradation in the gel-like test system (DSC). However, YG with a higher Mw exerted a greater retarding effect on the short-term starch retrogradation in gel-like test systems (Mixolab and rheology). LF-NMR indicated that OG and HBG increased the population of less-bound water by wrapping around the starch. In summary, the structural characteristics of β-glucan (Mw and aggregation state) and experiment condition (solid content) jointly influenced starch retrogradation, because a lower Mw and higher aggregation capacity β-glucan interacted more readily with starch and inhibited more starch re-association due to the higher diffusion rate in the sol-like system.
Collapse
Affiliation(s)
- Tingting Yuan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Yang
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo 532415, China
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Guangxi Yangxiang Co., Ltd., Guigang 537100, China.
| | - Yan Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Cao H, Li R, Shi M, Song H, Li S, Guan X. Promising effects of β-glucans on gelation in protein-based products: A review. Int J Biol Macromol 2024; 256:127574. [PMID: 37952797 DOI: 10.1016/j.ijbiomac.2023.127574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Gel property is one of the most important abilities to endow protein-based food products with a unique texture and higher overall acceptability. Cereal β-glucan (BG) is widely applied in protein-based products to improve the stability of the protein gel by increasing water holding capacity, storage modulus (G'), loss modulus (G") and linking with protein through more exposed sites, making it easier to form a stronger three-dimensional gel network. In addition, BG may be cross-linked with proteins, or physically embedded and covered in protein network structures, interacting with proteins mainly through non-covalent bonds including hydrogen bonding and electrostatic interaction. Furthermore, the transition of the α-helix to the β-form in the protein secondary structure also contributes to the stability of the protein gel. The practical applications of BG from different cereals in protein-based products are summarized, and the rheological properties, microstructure of protein as well as the underlying interaction mechanisms between BG and protein are discussed. In conclusion, cereal BG is a promising polysaccharide in developing nutritional protein-based products with better sensory properties.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Ranqing Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Mengmeng Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China.
| |
Collapse
|
3
|
Yang Y, Wang X. Effects of coarse cereals on dough and Chinese steamed bread - a review. Front Nutr 2023; 10:1186860. [PMID: 37599688 PMCID: PMC10434817 DOI: 10.3389/fnut.2023.1186860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Chinese steamed breads (CSBs) are long-established staple foods in China. To enhance the nutritional value, coarse cereals such as oats, buckwheat, and quinoa have been added to the formulation for making CSBs. This review presents the nutritional value of various coarse cereals and analyses the interactions between the functional components of coarse cereals in the dough. The addition of coarse cereals leads to changes in the rheological, fermentation, and pasting aging properties of the dough, which further deteriorates the appearance and texture of CSBs. This review can provide some suggestions and guidelines for the production of staple and nutritious staple foods.
Collapse
Affiliation(s)
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Cao X, Islam MN, Lu D, Han C, Wang L, Tan M, Chen Y, Xin N. Effects of barley seedling powder on rheological properties of dough and quality of steamed bread. FOOD SCI TECHNOL INT 2023:10820132231188988. [PMID: 37464807 DOI: 10.1177/10820132231188988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In order to find the optimal share of barley seedling powder (BSP) to improve the rheological properties of wheat dough and physico-chemical properties of steamed bread (SB), BSP was added with wheat flour at various proportions (2-10%). Results showed that with the increasing amount of BSP additive, the farinograph index (86.33-123), dough stability (9.37-12.63 min), and dough development time (6.23-7.63 min) in blend flour increased. Similarly, with the increasing BSP, SB became darker and more greenish, and the total flavonoid content increased. The content of chlorophyll-b, and total chlorophyll demonstrated a faster increase than that of chlorophyll-a. The hardness and chewability of SB improved as well whereas the springiness increased first and then decreased. The best springiness and gumminess of SB were found with 2% and 8% BSP additives respectively. 2%, 4%, and 6% addition of BSP resulted in a slight fluctuation in the bound water quantity than 8% and 10% BSP additive. No new compound formation was confirmed by Infrared analysis and there was only a heat and mass transfer process. Results from this study indicated that SB with improved quality attributes can be prepared from wheat flour fortified with BSP at 2-4%.
Collapse
Affiliation(s)
- Xiaohuang Cao
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Md Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Food Safety and Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dandan Lu
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Congying Han
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Lei Wang
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Mingxiong Tan
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Yuan Chen
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Ning Xin
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| |
Collapse
|
5
|
Preparation and modification of high dietary fiber flour: A review. Food Res Int 2018; 113:24-35. [DOI: 10.1016/j.foodres.2018.06.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
|
6
|
Liu R, Solah VA, Wei Y, Wu G, Wang X, Crosbie G, Fenton H. Sensory evaluation of Chinese white salted noodles and steamed bread made with Australian and Chinese wheat flour. Cereal Chem 2018. [DOI: 10.1002/cche.10089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rui Liu
- Institute of Food and Nutrition Development; Ministry of Agriculture; Beijing China
| | - Vicky Ann Solah
- School of Molecular and Life Sciences; Faculty of Science and Engineering; Curtin University; Perth Western Australia Australia
| | - Yimin Wei
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences (CAAS); Ministry of Agriculture; Beijing China
| | - Guiling Wu
- Jinshahe Noodle Manufacturing Co Ltd; Xingtai City Hebei Province China
| | - Xulin Wang
- Jinshahe Noodle Manufacturing Co Ltd; Xingtai City Hebei Province China
| | - Graham Crosbie
- Crosbie Grain Quality Consulting; Perth Western Australia Australia
| | - Haelee Fenton
- School of Molecular and Life Sciences; Faculty of Science and Engineering; Curtin University; Perth Western Australia Australia
| |
Collapse
|