1
|
Mohapatra AN, Jabarin R, Ray N, Netser S, Wagner S. Impaired emotion recognition in Cntnap2-deficient mice is associated with hyper-synchronous prefrontal cortex neuronal activity. Mol Psychiatry 2024:10.1038/s41380-024-02754-8. [PMID: 39289476 DOI: 10.1038/s41380-024-02754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Individuals diagnosed with autism spectrum disorder (ASD) show difficulty in recognizing emotions in others, a process termed emotion recognition. While human fMRI studies linked multiple brain areas to emotion recognition, the specific mechanisms underlying impaired emotion recognition in ASD are not clear. Here, we employed an emotional state preference (ESP) task to show that Cntnap2-knockout (KO) mice, an established ASD model, do not distinguish between conspecifics according to their emotional state. We assessed brain-wide local-field potential (LFP) signals during various social behavior tasks and found that Cntnap2-KO mice exhibited higher LFP theta and gamma rhythmicity than did C57BL/6J mice, even at rest. Specifically, Cntnap2-KO mice showed increased theta coherence, especially between the prelimbic cortex (PrL) and the hypothalamic paraventricular nucleus, during social behavior. Moreover, we observed significantly increased Granger causality of theta rhythmicity between these two brain areas, across several types of social behavior tasks. Finally, optogenetic stimulation of PrL pyramidal neurons in C57BL/6J mice impaired their social discrimination abilities, including in ESP. Together, these results suggest that increased rhythmicity of PrL pyramidal neuronal activity and its hyper-synchronization with specific brain regions are involved in the impaired emotion recognition exhibited by Cntnap2-KO mice.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Natali Ray
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Mastrangelo M, Greco C, Tolve M, Bartolini E, Russo A, Nicita F, Pruna D, Galli J, Favaro J, Terrone G, De Felice C, Pisani F. Epilepsy phenotypes across the different age-ranges in IQSEC2-related encephalopathy: An Italian multicentre retrospective cohort study. Seizure 2024; 119:119-127. [PMID: 38851096 DOI: 10.1016/j.seizure.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Epilepsy is a hallmark of IQSEC2-related encephalopathy within a phenotypic variability ranging between early onset epileptic and developmental encephalopathy and X-linked intellectual disability with epilepsy. PATIENTS AND METHODS Data including demographic aspects, gene variants, seizure semiology and timing, EEG features, neuroimaging and response to therapy were retrospectively collected in patients with IQSEC2-related epilepsy referring to 8 Italian tertiary centres. RESULTS The reported cohort included 11 patients (8 males and 3 females). Mean age at the onset of epilepsy was 3.90±2.80 years. No cases were reported in the first year of life. No specific epileptic syndromes were recognized. Predominant seizure-types in the age range 12-36 months included focal onset tonic seizures with impaired awareness, myoclonic seizures, and late onset spasms. Generalized motor seizures were predominant in patients between 3 and 6 years and between 12 and 18 years while focal motor seizures with impaired awareness were the most represented types between 6 and 12 years. No patients experienced status epilepticus. EEG patterns included a delayed maturation of EEG organization, irregular focal or diffuse slow activity, multifocal or diffuse epileptiform abnormalities. No structural epileptogenic lesions were detected at MRI. Valproate, lamotrigine, clobazam, topiramate and levetiracetam were the most used antiseizure medication. Complete seizure freedom was achieved only in 2 patients. CONCLUSIONS Onset of epilepsy after the first year of age, predominance of focal seizures with impaired awareness and generalized motor seizures, no pathognomonic underlying epileptic syndrome and infrequent occurrence of status epilepticus emerged as the main features of IQSEC2-related epilepsy phenotype.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Woman/Child Health and Urological Sciences Department, Sapienza University of Rome, Rome, Italy; Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health-Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy.
| | - Carlo Greco
- Department of Human Neuroscience-Sapienza, University of Rome, Rome, Italy
| | - Manuela Tolve
- Unit of Clinical Pathology, Azienda Ospedalieo Universitaria Policilinico Umberto I, Rome, Italy
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Angelo Russo
- Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età Pediatrica, IRCCS, Bologna, Italy
| | - Francesco Nicita
- Unit of Neuromuscolar and Neurodegenerative Disorders, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Dario Pruna
- Child Neurology and Epilepsy Unit Pediatric Department ARNAS Brotzu Cagliari, Italy
| | - Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Jacopo Favaro
- Pediatric Neurology and Neurophysiology Unit, Department of Women's and Children Health, University of Padua, Padua 35128, Italy
| | - Gaetano Terrone
- Child Neuropsychiatry Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Claudio De Felice
- Pediatrics Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesco Pisani
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health-Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy; Department of Human Neuroscience-Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
3
|
Shokhen M, Walikonis R, Uversky VN, Allbeck A, Zezelic C, Feldman D, Levy NS, Levy AP. Molecular modeling of ARF6 dysregulation caused by mutations in IQSEC2. J Biomol Struct Dyn 2024; 42:1268-1279. [PMID: 37078745 DOI: 10.1080/07391102.2023.2199085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
IQSEC2 gene mutations are associated with epilepsy, autism, and intellectual disability. The primary function IQSEC2, mediated via its Sec 7 domain, is to act as a guanine nucleotide exchange factor for ARF6. We sought to develop a molecular model, which may explain the aberrant Sec 7 activity on ARF6 of different human IQSEC2 mutations. We integrated experimental data of IQSEC2 mutants with protein structure prediction by the RaptorX server combined with molecular modeling and molecular dynamics simulations. Normally, apocalmodulin (apoCM) binds to IQSEC2 resulting in its N-terminal fragment inhibiting access of its Sec 7 domain to ARF6. An increase in Ca2+ concentration destabilizes the interaction of IQSEC2 with apoCM and removes steric hindrance of Sec 7 binding with ARF6. Mutations at amino acid residue 350 of IQSEC2 result in loss of steric hindrance of Sec 7 binding with ARF6 leading to constitutive activation of ARF6 by Sec 7. On the other hand, a mutation at amino acid residue 359 of IQSEC2 results in constitutive hindrance of Sec 7 binding to ARF6 leading to the loss of the ability of IQSEC2 to activate ARF6. These studies provide a model for dysregulation of IQSEC2 Sec 7 activity by mutant IQSEC2 proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Michael Shokhen
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Randall Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, Florida, USA
| | - Amnon Allbeck
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Camryn Zezelic
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Danielle Feldman
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nina S Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Leoncini S, Boasiako L, Lopergolo D, Altamura M, Fazzi C, Canitano R, Grosso S, Meloni I, Baldassarri M, Croci S, Renieri A, Mastrangelo M, De Felice C. Natural Course of IQSEC2-Related Encephalopathy: An Italian National Structured Survey. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1442. [PMID: 37761403 PMCID: PMC10528631 DOI: 10.3390/children10091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Pathogenic loss-of-function variants in the IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause intellectual disability with Rett syndrome (RTT)-like features. The aim of this study was to obtain systematic information on the natural history and extra-central nervous system (CNS) manifestations for the Italian IQSEC2 population (>90%) by using structured family interviews and semi-quantitative questionnaires. IQSEC2 encephalopathy prevalence estimate was 7.0 to 7.9 × 10-7. Criteria for typical RTT were met in 42.1% of the cases, although psychomotor regression was occasionally evidenced. Genetic diagnosis was occasionally achieved in infancy despite a clinical onset before the first 24 months of life. High severity in both the CNS and extra-CNS manifestations for the IQSEC2 patients was documented and related to a consistently adverse quality of life. Neurodevelopmental delay was diagnosed before the onset of epilepsy by 1.8 to 2.4 years. An earlier age at menarche in IQSEC2 female patients was reported. Sleep disturbance was highly prevalent (60 to 77.8%), with mandatory co-sleeping behavior (50% of the female patients) being related to de novo variant origin, younger age, taller height with underweight, better social interaction, and lower life quality impact for the family and friends area. In conclusion, the IQSEC2 encephalopathy is a rare and likely underdiagnosed developmental encephalopathy leading to an adverse life quality impact.
Collapse
Affiliation(s)
- Silvia Leoncini
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (L.B.); (M.A.); (C.F.)
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Lidia Boasiako
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (L.B.); (M.A.); (C.F.)
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
- IRCCS Stella Maris Foundation, Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, 56018 Pisa, Italy
| | - Maria Altamura
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (L.B.); (M.A.); (C.F.)
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Caterina Fazzi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (L.B.); (M.A.); (C.F.)
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Roberto Canitano
- Child Neuropsychiatry Unit, Department of Mental Health, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Salvatore Grosso
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
- Pediatric Unit, Department of Women’s and Children’s Health, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, 53100 Siena, Italy; (I.M.); (M.B.); (S.C.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, 53100 Siena, Italy; (I.M.); (M.B.); (S.C.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, 53100 Siena, Italy; (I.M.); (M.B.); (S.C.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy; (I.M.); (M.B.); (S.C.); (A.R.)
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Mario Mastrangelo
- Maternal Infantile and Urological Sciences Department, Sapienza University of Rome, 00185 Rome, Italy;
- Child Neurology and Psychiatry Unit, Department of Neurosciences and Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy; (S.L.); (L.B.); (M.A.); (C.F.)
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
5
|
Shafique A, Sultan T, Alzahrani F, Hun Seo G, Alkuraya FS, Naz S. Genomic Analysis of Multiplex Consanguineous Families Reveals Causes of Neurodevelopmental Disorders with Epilepsy. Gene 2023:147599. [PMID: 37393059 DOI: 10.1016/j.gene.2023.147599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Neurodevelopmental disorders (NDD) are a diverse group of disorders that affect the development of the nervous system. Epilepsy is a common phenotypic aspect of NDD. METHODS We recruited eight consanguineous families from Pakistan which segregated recessively inherited NDD with epilepsy. Magnetic Resonance imaging (MRI) and Electroencephalogram (EEG) were completed. Exome sequencing was carried out for selected participants from each family. The exome data were analyzed for exonic and splice-site variants that had allele frequencies of less than 0.01 in public databases. RESULTS Clinical investigations determined that developmental delay, intellectual disability and seizures were manifested by most patients in early childhood. EEG findings were abnormal in the participants of four families. MRI revealed demyelination orcerebral atrophic changes in multiple participants. We identified four novel homozygous variants including nonsense andmissense variants in OCLN, ALDH7A1, IQSEC2 and COL3A1, segregating with the phenotypes in the participants of four families. Previously reported homozygous variants of CNTNAP2, TRIT1 and NARS1 were found in individuals from three families. Clinical utility was observed in directing treatment in case of patients with an ALDH7A1 variant which included pyridoxine administration and enabling accurate counseling about the natural history and recurrence risk. CONCLUSION Our results add to the clinical and molecular delineation of very rare NDD with epilepsy. The high success rate of exome sequencing is likely attributable to the expectation of homozygous variants in patients of consanguineous families, and in one case, the availability of positional mapping data that greatly aided the variant prioritization.
Collapse
Affiliation(s)
- Anum Shafique
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Tipu Sultan
- Children's Hospital & the Institute of Child Health, Lahore, Pakistan.
| | - Fatema Alzahrani
- Center for Genomic Medicine, Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | | - Fowzan S Alkuraya
- Center for Genomic Medicine, Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
6
|
Kane O, McCoy A, Jada R, Borisov V, Zag L, Zag A, Schragenheim-Rozales K, Shalgi R, Levy NS, Levy AP, Marsh ED. Characterization of spontaneous seizures and EEG abnormalities in a mouse model of the human A350V IQSEC2 mutation and identification of a possible target for precision medicine based therapy. Epilepsy Res 2022; 182:106907. [DOI: 10.1016/j.eplepsyres.2022.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
|
7
|
Jada R, Zag L, Borisov V, Levy NS, Netser S, Jabarin R, Wagner S, Schragenheim-Rozales K, Shalgi R, Levy AP. Housing of A350V IQSEC2 pups at 37 °C ambient temperature prevents seizures and permits the development of social vocalizations in adulthood. Int J Hyperthermia 2021; 38:1495-1501. [PMID: 34666607 DOI: 10.1080/02656736.2021.1988730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Mutations in the human IQSEC2 gene are associated with drug-resistant epilepsy and severe behavioral dysfunction. We have focused on understanding one human IQSEC2 missense mutation (A350V) for which we have created a corresponding A350V IQSEC2 mouse model by CRISPR which demonstrates seizures when the mice are 15-20 days old and impaired social vocalizations in adulthood. We observed that a child with the A350V mutation stops having seizures when experiencing a fever of greater than 38 °C. In this study, we first sought to determine if we could recapitulate this phenomenon in A350V 15-20 day old mice using a previously established protocol to raise body temperature to 39 °C achieved by housing the mice at 37 °C. We then sought to determine if mice in whom seizure activity had been prevented as pups would develop social vocalization activity in adulthood. METHODS 15-20 day old A350V male mice were housed either at 37 °C or 22 °C. Ultrasonic vocalizations of these mice were assessed at 8-10 weeks in response to a female stimulus. RESULTS Housing of 15-20 day old A350V mice at 37 °C resulted in a reduction in lethal seizures to 2% (1/41) compared to 45% (48/108) in mice housed at 22 °C, p = 0.0001. Adult A350V mice who had been housed at 37 °C as pups displayed a significant improvement in the production of social vocalizations. CONCLUSION Raising the body temperature by raising the ambient temperature might provide a means to reduce seizures associated with the A350V IQSEC2 mutation and thereby allow for an improved neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Reem Jada
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Zag
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Veronika Borisov
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nina S Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shai Netser
- Faculty of Natural Sciences, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Renad Jabarin
- Faculty of Natural Sciences, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Faculty of Natural Sciences, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Reut Shalgi
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Levy AP, Levy NS, Heyman E, Schertz M, Genizi J. Reduction in seizure burden in a child with a A350V IQSEC2 mutation using heat therapy with a Jacuzzi. Clin Case Rep 2021; 9:e04734. [PMID: 34484768 PMCID: PMC8405536 DOI: 10.1002/ccr3.4734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
A child with a A350V IQSEC2 missense mutation resulting in drug-resistant epilepsy stops having seizures when he has a fever. We demonstrate that raising the body temperature of the child using a commercial Jacuzzi dramatically reduces his seizures and appears to improve his social behavioral interactions.
Collapse
Affiliation(s)
- Andrew P Levy
- Technion Israel Institute of TechnologyTechnion Faculty of MedicineDepartment of BiochemistryHaifaIsrael
| | - Nina S Levy
- Technion Israel Institute of TechnologyTechnion Faculty of MedicineDepartment of BiochemistryHaifaIsrael
| | - Eli Heyman
- Department of Pediatric NeurologyAssaf Harofeh Medical Center and Tel Aviv UniversityTel AvivIsrael
| | - Mitchell Schertz
- Child Development and Pediatric Neurology ServiceMehudet North and Technion Israel Institute of TechnologyHaifaIsrael
| | - Jacob Genizi
- Bnai Zion Medical Center and Technion Israel Institute of TechnologyPediatric Neurology UnitHaifaIsrael
| |
Collapse
|
9
|
Izumi T, Aihara Y, Kikuchi A, Kure S. Electroencephalographic findings and genetic characterization of two brothers with IQSEC2 pathogenic variant. Brain Dev 2021; 43:652-656. [PMID: 33494955 DOI: 10.1016/j.braindev.2020.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Two brothers with an IQSEC2 pathogenic variant presented with early onset intellectual disability, intractable epileptic seizures, autism spectrum disorders, postnatal microcephalus and slowly progressive rigid-spasticity. Their epileptic seizures were characterized by intractability, early onset epileptic spasms, and then clusters of tonic/tonic-clonic seizures, exacerbated by valproate. Electroencephalography showed periodic discharges, including periodic high voltage slow complexes and burst-suppression activity. Whole exome sequencing, using DNA from peripheral blood of both brothers, identified a pathogenic variant, c.2776 C > T, p.(Arg 926*) in exon 9 of IQSEC2 (NM 001111125.3). Their parents and another brother did not have this variant, which may suggest that maternal gonadal mosaicism is the most likely mechanism.
Collapse
Affiliation(s)
- Tatsuro Izumi
- Department of Pediatrics and Child Neurology, Nanao National Hospital, Nanao, Ishikawa 9268531, Japan.
| | - Yu Aihara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi 9808575, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi 9808575, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi 9808575, Japan
| |
Collapse
|
10
|
Jabarin R, Levy N, Abergel Y, Berman JH, Zag A, Netser S, Levy AP, Wagner S. Pharmacological modulation of AMPA receptors rescues specific impairments in social behavior associated with the A350V Iqsec2 mutation. Transl Psychiatry 2021; 11:234. [PMID: 33888678 PMCID: PMC8062516 DOI: 10.1038/s41398-021-01347-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In this study we tested the hypothesis that pharmacological modulation of glutamatergic neurotransmission could rescue behavioral deficits exhibited by mice carrying a specific mutation in the Iqsec2 gene. The IQSEC2 protein plays a key role in glutamatergic synapses and mutations in the IQSEC2 gene are a frequent cause of neurodevelopmental disorders. We have recently reported on the molecular pathophysiology of one such mutation A350V and demonstrated that this mutation downregulates AMPA type glutamatergic receptors (AMPAR) in A350V mice. Here we sought to identify behavioral deficits in A350V mice and hypothesized that we could rescue these deficits by PF-4778574, a positive AMPAR modulator. Using a battery of social behavioral tasks, we found that A350V Iqsec2 mice exhibit specific deficits in sex preference and emotional state preference behaviors as well as in vocalizations when encountering a female mouse. The social discrimination deficits, but not the impaired vocalization, were rescued with a single dose of PF-4778574. We conclude that social behavior deficits associated with the A350V Iqsec2 mutation may be rescued by enhancing AMPAR mediated synaptic transmission.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nina Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yasmin Abergel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Joshua H Berman
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Amir Zag
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
11
|
Lichtman D, Bergmann E, Kavushansky A, Cohen N, Levy NS, Levy AP, Kahn I. Structural and functional brain-wide alterations in A350V Iqsec2 mutant mice displaying autistic-like behavior. Transl Psychiatry 2021; 11:181. [PMID: 33753721 PMCID: PMC7985214 DOI: 10.1038/s41398-021-01289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
IQSEC2 is an X-linked gene that is associated with autism spectrum disorder (ASD), intellectual disability, and epilepsy. IQSEC2 is a postsynaptic density protein, localized on excitatory synapses as part of the NMDA receptor complex and is suggested to play a role in AMPA receptor trafficking and mediation of long-term depression. Here, we present brain-wide structural volumetric and functional connectivity characterization in a novel mouse model with a missense mutation in the IQ domain of IQSEC2 (A350V). Using high-resolution structural and functional MRI, we show that animals with the A350V mutation display increased whole-brain volume which was further found to be specific to the cerebral cortex and hippocampus. Moreover, using a data-driven approach we identify putative alterations in structure-function relations of the frontal, auditory, and visual networks in A350V mice. Examination of these alterations revealed an increase in functional connectivity between the anterior cingulate cortex and the dorsomedial striatum. We also show that corticostriatal functional connectivity is correlated with individual variability in social behavior only in A350V mice, as assessed using the three-chamber social preference test. Our results at the systems-level bridge the impact of previously reported changes in AMPA receptor trafficking to network-level disruption and impaired social behavior. Further, the A350V mouse model recapitulates similarly reported brain-wide changes in other ASD mouse models, with substantially different cellular-level pathologies that nonetheless result in similar brain-wide alterations, suggesting that novel therapeutic approaches in ASD that result in systems-level rescue will be relevant to IQSEC2 mutations.
Collapse
Affiliation(s)
- Daniela Lichtman
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Eyal Bergmann
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Alexandra Kavushansky
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nadav Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nina S Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Andrew P Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| | - Itamar Kahn
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
12
|
IQSEC2 mutation associated with epilepsy, intellectual disability, and autism results in hyperexcitability of patient-derived neurons and deficient synaptic transmission. Mol Psychiatry 2021; 26:7498-7508. [PMID: 34535765 PMCID: PMC8873005 DOI: 10.1038/s41380-021-01281-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022]
Abstract
Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.
Collapse
|
13
|
Psychiatric features and variable neurodevelopment outcome in four females with IQSEC2 spectrum disorder. J Genet 2020. [DOI: 10.1007/s12041-020-01204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Choi MH, Yang JO, Min JS, Lee JJ, Jun SY, Lee YJ, Yoon JY, Jeon SJ, Byeon I, Kang JW, Kim NS. A Novel X-Linked Variant of IQSEC2 is Associated with Lennox-Gastaut Syndrome and Mild Intellectual Disability in Three Generations of a Korean Family. Genet Test Mol Biomarkers 2019; 24:54-58. [PMID: 31829726 DOI: 10.1089/gtmb.2019.0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: Lennox-Gastaut syndrome (LGS) is a severe type of childhood-onset epilepsy with multiple types of seizures, specific discharges on electroencephalography, and intellectual disability. However, LGS-related genes are largely unknown. To identify causative genes related to LGS, we collected and analyzed data from a three-generation Korean family in which one member had LGS and two had intellectual disability. Methods: Genomic DNAs were extracted from blood samples of all participants and used in whole-exome sequencing (WES). Genetic variants were detected by the Genome Analysis Toolkit and confirmed by Sanger sequencing. Variant pathogenicity was evaluated by prediction programs and the American College of Medical Genetics criteria. The LGS patient had generalized slow spike-and-wave discharges, multiple types of seizures, and developmental delay. Results: Analyses of the WES data from the family revealed a novel variant (c.1048G>A, p.Ala350Thr) in the IQ motif and Sec7 domain 2 (IQSEC2). This variant is within a highly evolutionarily conserved IQ-like motif, indicating a decrease in the calmodulin-binding capacity or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid transmission. The hemizygous variant in the male with LGS was a maternally inherited X-linked variant from the heterozygous maternal grandmother and mother, both of whom had intellectual disability. Conclusion: These findings indicate that the variant of IQSEC2 triggered both LGS and intellectual disability dependent on sex in this family. We report a novel X-linked inherited IQSEC2 variant for LGS and intellectual disability, which enhances the spectrum of variants in the IQ-like motif of IQSEC2.
Collapse
Affiliation(s)
- Min-Hyuk Choi
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jin Ok Yang
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ju-Sik Min
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jeong-Ju Lee
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo-Young Jun
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong-Jae Lee
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ji-Yong Yoon
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Su-Jin Jeon
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Iksu Byeon
- Korean BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Joon-Won Kang
- Department of Pediatrics and Medical Science, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nam-Soon Kim
- Rare-Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
15
|
A case of intellectual disability reveals a novel mutation in IQSEC2 gene by whole exome sequencing. Psychiatr Genet 2019; 29:243-247. [DOI: 10.1097/ypg.0000000000000232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Rogers EJ, Jada R, Schragenheim-Rozales K, Sah M, Cortes M, Florence M, Levy NS, Moss R, Walikonis RS, Palty R, Shalgi R, Lichtman D, Kavushansky A, Gerges NZ, Kahn I, Umanah GKE, Levy AP. An IQSEC2 Mutation Associated With Intellectual Disability and Autism Results in Decreased Surface AMPA Receptors. Front Mol Neurosci 2019; 12:43. [PMID: 30842726 PMCID: PMC6391579 DOI: 10.3389/fnmol.2019.00043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy.
Collapse
Affiliation(s)
- Eli J Rogers
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Reem Jada
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | | | - Megha Sah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Marisol Cortes
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Matthew Florence
- Department of Biopharmaceutical Sciences and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nina S Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Rachel Moss
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Raz Palty
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Reut Shalgi
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Daniela Lichtman
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Nashaat Z Gerges
- Department of Biopharmaceutical Sciences and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Itamar Kahn
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - George K E Umanah
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Zipper R, Baine SD, Genizi J, Maoz H, Levy NS, Levy AP. Developmental progression of intellectual disability, autism, and epilepsy in a child with an IQSEC2 gene mutation. Clin Case Rep 2017; 5:1639-1643. [PMID: 29026562 PMCID: PMC5628232 DOI: 10.1002/ccr3.1139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/27/2017] [Indexed: 01/17/2023] Open
Abstract
The neurodevelopmental progression of a school‐aged child with a spontaneous IQSEC2 mutation has demonstrated apparent regression of milestones and language. Seizures associated with the disorder have been refractory to medical treatment. Late treatment of autism in this child has led to improved social skills.
Collapse
Affiliation(s)
- Rachelle Zipper
- Technion Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
| | - Sherri D Baine
- Department of Pediatrics North York General Hospital University of Toronto Toronto Ontario Canada
| | - Jacob Genizi
- Technion Faculty of Medicine Technion Israel Institute of Technology Haifa Israel.,Pediatric Neurology Unit Bnai Zion Medical Center Haifa Israel
| | - Hen Maoz
- Kiryat Shmona Regional Unit for Child Development Kiryat Shmona Israel
| | - Nina S Levy
- Technion Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
| | - Andrew P Levy
- Technion Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
| |
Collapse
|