1
|
Akinsemolu AA, Onyeaka H, Odion S, Adebanjo I. Exploring Bacillus subtilis: Ecology, biotechnological applications, and future prospects. J Basic Microbiol 2024; 64:e2300614. [PMID: 38507723 DOI: 10.1002/jobm.202300614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
From its early identification by Christian Gottfried Ehrenberg to its current prominence in scientific research, Bacillus subtilis (B. subtilis) has emerged as a foundational model organism in microbiology. This comprehensive review delves deep into its genetic, physiological, and biochemical intricacies, revealing a sophisticated cellular blueprint. With the incorporation of advanced techniques such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 and integrative computational methodologies, the potential applications of B. subtilis span diverse sectors. These encompass its significant contributions to biotechnology, agriculture, and medical fields and its potential for aiding environmental cleanup efforts. Yet, as we move forward, we must grapple with concerns related to safety, ethics, and the practical implementation of our lab findings in everyday scenarios. As our understanding of B. subtilis deepens, it is evident that its contributions will be central to pioneering sustainable solutions for global challenges in the years to come.
Collapse
Affiliation(s)
- Adenike A Akinsemolu
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| | - Samuel Odion
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
- The Green Institute, Ondo, Ondo State, Nigeria
| | - Idris Adebanjo
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Yang X, Xue C, Chen K, Gao D, Wang H, Tang C. Characteristics of elderly diabetes patients: focus on clinical manifestation, pathogenic mechanism, and the role of traditional Chinese medicine. Front Pharmacol 2024; 14:1339744. [PMID: 38273819 PMCID: PMC10808572 DOI: 10.3389/fphar.2023.1339744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Diabetes mellitus has become a major public health issue globally, putting an enormous burden on global health systems and people. Among all diseased groups, a considerable part of patients are elderly, while their clinical features, pathogenic processes, and medication regimens are different from patients of other ages. Despite the availability of multiple therapies and techniques, there are still numerous elderly diabetes patients suffering from poor blood glucose control, severe complications, and drug adverse effects, which negatively affect the quality of life in their golden years. Traditional Chinese Medicine (TCM) has been widely used in the treatment of diabetes for several decades, and its relevant clinical practice has confirmed that it has a satisfactory effect on alleviating clinical symptoms and mitigating the progression of complications. Chinese herbal medicine and its active components were used widely with obvious clinical advantages by multiple targets and signaling pathways. However, due to the particular features of elderly diabetes, few studies were conducted to explore Traditional Chinese Medicine intervention on elderly diabetic patients. This study reviews the research on clinical features, pathogenic processes, treatment principles, and TCM treatments, hoping to provide fresh perspectives on the prevention and management strategies for elderly diabetes.
Collapse
Affiliation(s)
- Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chongxiang Xue
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongyang Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Leñini C, Rodriguez Ayala F, Goñi AJ, Rateni L, Nakamura A, Grau RR. Probiotic properties of Bacillus subtilis DG101 isolated from the traditional Japanese fermented food nattō. Front Microbiol 2023; 14:1253480. [PMID: 37840737 PMCID: PMC10569484 DOI: 10.3389/fmicb.2023.1253480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Spore-forming probiotic bacteria offer interesting properties as they have an intrinsic high stability, and when consumed, they are able to survive the adverse conditions encountered during the transit thorough the host gastrointestinal (GI) tract. A traditional healthy food, nattō, exists in Japan consisting of soy fermented by the spore-forming bacterium Bacillus subtilis natto. The consumption of nattō is linked to many beneficial health effects, including the prevention of high blood pressure, osteoporosis, and cardiovascular-associated disease. We hypothesize that the bacterium B. subtilis natto plays a key role in the beneficial effects of nattō for humans. Here, we present the isolation of B. subtilis DG101 from nattō and its characterization as a novel spore-forming probiotic strain for human consumption. B. subtilis DG101 was non-hemolytic and showed high tolerance to lysozyme, low pH, bile salts, and a strong adherence ability to extracellular matrix proteins (i.e., fibronectin and collagen), demonstrating its potential application for competitive exclusion of pathogens. B. subtilis DG101 forms robust liquid and solid biofilms and expresses several extracellular enzymes with activity against food diet-associated macromolecules (i.e., proteins, lipids, and polysaccharides) that would be important to improve food diet digestion by the host. B. subtilis DG101 was able to grow in the presence of toxic metals (i.e., chromium, cadmium, and arsenic) and decreased their bioavailability, a feature that points to this probiotic as an interesting agent for bioremediation in cases of food and water poisoning with metals. In addition, B. subtilis DG101 was sensitive to antibiotics commonly used to treat infections in medical settings, and at the same time, it showed a potent antimicrobial effect against pathogenic bacteria and fungi. In mammalians (i.e., rats), B. subtilis DG101 colonized the GI tract, and improved the lipid and protein serum homeostasis of animals fed on the base of a normal- or a deficient-diet regime (dietary restriction). In the animal model for longevity studies, Caenorhabditis elegans, B. subtilis DG101 significantly increased the animal lifespan and prevented its age-related behavioral decay. Overall, these results demonstrate that B. subtilis DG101 is the key component of nattō with interesting probiotic properties to improve and protect human health.
Collapse
Affiliation(s)
- Cecilia Leñini
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Facundo Rodriguez Ayala
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anibal Juan Goñi
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Liliana Rateni
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Roberto Ricardo Grau
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
4
|
Meng F, Zhang F, Meng M, Chen Q, Yang Y, Wang W, Xie H, Li X, Gu W, Yu J. Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 on type 2 diabetes mellitus rats. Front Microbiol 2023; 14:1158652. [PMID: 37152739 PMCID: PMC10157401 DOI: 10.3389/fmicb.2023.1158652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Many synbiotics are effective for the prevention and treatment of type 2 diabetes mellitus (T2DM). In the treatment of T2DM, synbiotics often regulate the composition of intestinal flora, which autoinducer-2 (AI-2) may play an important role. Whether the changes of intestinal flora are related to AI-2 during synbiotics treatment of T2DM is a topic worth studying. We elucidated the effects of synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 (SML) on T2DM rats. Male Spraque-Dawley rats were injected intraperitoneally with streptozotocin (STZ) and randomly grouped. After that, biochemical parameters, intestinal flora, fecal AI-2, and intestinal colonization of L. reuteri were detected. The results showed that SML had a hypoglycemic effect and mitigated the organ lesions of the liver and pancreas. Also, SML regulated biochemical parameters such as short chain fatty acids (SCFAs), lipopolysaccharides (LPS), intercellular cell adhesion molecule-1 (ICAM-1), and tumor necrosis factor-α (TNF-α). On the other hand, the proportion of probiotics, such as Lactobacillus acidophilus, L. reuteri, Bifidobacterium pseudolongum, Lactobacillus murinus, and Lactobacillus johnsonii, were elevated by the treatment of SML. In addition, SML promoted the colonization and proliferation of L. reuteri in the gut. Another thing to consider was that AI-2 was positively correlated with the total number of OTUs sequences and SML boosted AI-2 in the gut. Taken together, these results supported that SML may modulate intestinal flora through AI-2 to treat T2DM. This study provided a novel alternative strategy for the treatment of T2DM in future.
Collapse
Affiliation(s)
- Fanying Meng
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fan Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiuding Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yaqin Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wenbo Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haina Xie
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xue Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Gu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Wen Gu,
| | - Jie Yu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Jie Yu,
| |
Collapse
|
5
|
Safety Evaluation and Anti-Inflammatory Efficacy of Lacticaseibacillus paracasei PS23. Int J Mol Sci 2022; 24:ijms24010724. [PMID: 36614167 PMCID: PMC9821173 DOI: 10.3390/ijms24010724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Lacticaseibacillus paracasei strain PS23 (PS23) exhibits some probiotic properties. In this study, a genomic analysis of PS23 revealed no genes related to virulence or antibiotic resistance. Moreover, ornithine decarboxylase activity was not detected in vitro. In addition, PS23 was sensitive to the tested antibiotics. Genotoxicity tests for PS23 including the Ames test and chromosomal aberrations in vitro using Chinese hamster ovary cells and micronuclei in immature erythrocytes of ICR mice were all negative. Moreover, following a 28-day study involving repeated oral dose toxicity tests (40, 400, and 4000 mg/kg equal 1.28 × 1010, 1.28 × 1011, and 1.28 × 1012 CFU/kg body weight, respectively) using an ICR mouse model, no adverse effects were observed from any doses. In addition, supplementation with live or heat-killed PS23 ameliorates DSS-induced colonic inflammation in mice. Our findings suggest that PS23 is safe and has anti-inflammatory effects and may therefore have therapeutic implications.
Collapse
|
6
|
Tian B, Yao JH, Lin X, Lv WQ, Jiang LD, Wang ZQ, Shen J, Xiao HM, Xu H, Xu LL, Cheng X, Shen H, Qiu C, Luo Z, Zhao LJ, Yan Q, Deng HW, Zhang LS. Metagenomic study of the gut microbiota associated with cow milk consumption in Chinese peri-/postmenopausal women. Front Microbiol 2022; 13:957885. [PMID: 36051762 PMCID: PMC9425034 DOI: 10.3389/fmicb.2022.957885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cow milk consumption (CMC) and alterations of gut bacterial composition are proposed to be closely related to human health and disease. Our research aims to investigate the changes in human gut microbial composition in Chinese peri-/postmenopausal women with different CMC habits. A total of 517 subjects were recruited and questionnaires about their CMC status were collected; 394 subjects were included in the final analyses. Fecal samples were used for studying gut bacterial composition. All the subjects were divided into a control group (n = 248) and a CMC group (n = 146) according to their CMC status. Non-parametric tests and LEfSe at different taxonomic levels were used to reveal differentially abundant taxa and functional categories across different CMC groups. Relative abundance (RA) of one phylum (p_Actinobacteria), three genera (g_Bifidobacterium, g_Anaerostipes, and g_Bacteroides), and 28 species diversified significantly across groups. Specifically, taxa g_Anaerostipes (p < 0.01), g_Bacteroides (p < 0.05), s_Anaerostipes_hadrus (p < 0.01), and s_Bifidobacterium_pseudocatenulatum (p < 0.01) were positively correlated with CMC levels, but p_Actinobacteria (p < 0.01) and g_Bifidobacterium (p < 0.01) were negatively associated with CMC levels. KEGG module analysis revealed 48 gut microbiome functional modules significantly (p < 0.05) associated with CMC, including Vibrio cholerae pathogenicity signature, cholera toxins (p = 9.52e-04), and cephamycin C biosynthesis module (p = 0.0057), among others. In conclusion, CMC was associated with changes in gut microbiome patterns including beta diversity and richness of some gut microbiota. The alterations of certain bacteria including g_Anaerostipes and s_Bifidobacterium_pseudocatenulatum in the CMC group should be important for human health. This study further supports the biological value of habitual cow milk consumption.
Collapse
Affiliation(s)
- Bo Tian
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jia-Heng Yao
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wan-Qiang Lv
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Lin-Dong Jiang
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Zhuo-Qi Wang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hanli Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lu-Lu Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hui Shen
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Chuan Qiu
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Zhe Luo
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Lan-Juan Zhao
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Qiong Yan
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Wen Deng
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States,*Correspondence: Li-Shu Zhang,
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China,Hong-Wen Deng,
| |
Collapse
|
7
|
Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, Xu XY, Li HB. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021; 13:nu13093211. [PMID: 34579087 PMCID: PMC8470858 DOI: 10.3390/nu13093211] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic diseases are serious threats to public health and related to gut microbiota. Probiotics, prebiotics, synbiotics, and postbiotics (PPSP) are powerful regulators of gut microbiota, thus possessing prospects for preventing metabolic diseases. Therefore, the effects and mechanisms of PPSP on metabolic diseases targeting gut microbiota are worth discussing and clarifying. Generally, PPSP benefit metabolic diseases management, especially obesity and type 2 diabetes mellitus. The underlying gut microbial-related mechanisms are mainly the modulation of gut microbiota composition, regulation of gut microbial metabolites, and improvement of intestinal barrier function. Moreover, clinical trials showed the benefits of PPSP on patients with metabolic diseases, while the clinical strategies for gestational diabetes mellitus, optimal formula of synbiotics and health benefits of postbiotics need further study. This review fully summarizes the relationship between probiotics, prebiotics, synbiotics, postbiotics, and metabolic diseases, presents promising results and the one in dispute, and especially attention is paid to illustrates potential mechanisms and clinical effects, which could contribute to the next research and development of PPSP.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|