1
|
Waldvogel SM, Posey JE, Goodell MA. Human embryonic genetic mosaicism and its effects on development and disease. Nat Rev Genet 2024; 25:698-714. [PMID: 38605218 PMCID: PMC11408116 DOI: 10.1038/s41576-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Nearly every mammalian cell division is accompanied by a mutational event that becomes fixed in a daughter cell. When carried forward to additional cell progeny, a clone of variant cells can emerge. As a result, mammals are complex mosaics of clones that are genetically distinct from one another. Recent high-throughput sequencing studies have revealed that mosaicism is common, clone sizes often increase with age and specific variants can affect tissue function and disease development. Variants that are acquired during early embryogenesis are shared by multiple cell types and can affect numerous tissues. Within tissues, variant clones compete, which can result in their expansion or elimination. Embryonic mosaicism has clinical implications for genetic disease severity and transmission but is likely an under-recognized phenomenon. To better understand its implications for mosaic individuals, it is essential to leverage research tools that can elucidate the mechanisms by which expanded embryonic variants influence development and disease.
Collapse
Affiliation(s)
- Sarah M Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Sran S, Ringland A, Bedrosian TA. Building the brain mosaic: an expanded view. Trends Genet 2024; 40:747-756. [PMID: 38853120 PMCID: PMC11387136 DOI: 10.1016/j.tig.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
The complexity of the brain is closely tied to its nature as a genetic mosaic, wherein each cell is distinguished by a unique constellation of somatic variants that contribute to functional and phenotypic diversity. Postzygotic variation arising during neurogenesis is recognized as a key contributor to brain mosaicism; however, recent advances have broadened our understanding to include sources of neural genomic diversity that develop throughout the entire lifespan, from embryogenesis through aging. Moving beyond the traditional confines of neurodevelopment, in this review, we delve into the complex mechanisms that enable various origins of brain mosaicism.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amanda Ringland
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
3
|
Lall AE, Brener S, Eller DP. Fetus Conceived via In Vitro Fertilization With Mosaic Uniparental Isodisomy and Two Balanced Translocations. Cureus 2024; 16:e62095. [PMID: 38989381 PMCID: PMC11236433 DOI: 10.7759/cureus.62095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
We present a case of a fetus acquiring two different balanced translocations from each parent and subsequent uniparental isodisomy from postzygotic loss of a paternal chromosome. Balanced chromosomal translocations occur in 0.14% of the population and increase the risk of other genetic abnormalities, such as uniparental disomy (UPD) and mosaicism. Preimplantation genetic testing (PGT) can identify some genetic abnormalities. Translocations t(6;21) and t(5;15) have been reported individually but never together in a viable fetus. A non-consanguineous couple who were known carriers of two different balanced translocations conceived via classic in vitro fertilization (IVF). They had a normal PGT completed. Chorionic villus sampling (CVS) revealed that the fetus had received t(6;21) from the mother and t(5;15) from the father. The probability of the fetus acquiring both translocations was 2.8%. CVS also revealed UPD of chromosome 14. Amniocentesis was performed, which was consistent with the CVS in detecting the balanced translocations but provided more information about the UPD, determining that it was a mosaic maternal uniparental isodisomy of chromosome 14 (UPD(14)mat). The couple underwent genetic counseling to discuss the above findings and ultimately decided on dilation and evacuation at 17 weeks of gestation. The likelihood of conception of this fetus and survival past the first trimester is extremely rare. These specific chromosomal translocations and (UPD(14)mat) have never been reported before. This case emphasizes the concomitant nature of imprinted genes, resulting in multiple genetically unique alterations. This report also highlights the limitations of PGT, CVS, and amniocentesis in being reproducibly consistent, which is important to discuss prior to IVF conception.
Collapse
Affiliation(s)
- Ashley E Lall
- Obstetrics and Gynecology, Wellstar Kennestone Hospital, Marietta, USA
| | - Samantha Brener
- Pediatrics and Neonatology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Daniel P Eller
- Maternal-Fetal Medicine, Wellstar Kennestone Hospital, Marietta, USA
| |
Collapse
|
4
|
Bai W, Zhang Q, Lin Z, Ye J, Shen X, Zhou L, Cai W. Analysis of copy number variations and possible candidate genes in spontaneous abortion by copy number variation sequencing. Front Endocrinol (Lausanne) 2023; 14:1218793. [PMID: 37916154 PMCID: PMC10616874 DOI: 10.3389/fendo.2023.1218793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Embryonic chromosomal abnormalities represent a major causative factor in early pregnancy loss, highlighting the importance of understanding their role in spontaneous abortion. This study investigates the potential correlation between chromosomal abnormalities and spontaneous abortion using copy number variation sequencing (CNV-seq), a Next-Generation Sequencing (NGS) technology. Methods We analyzed Copy Number Variations (CNVs) in 395 aborted fetal specimens from spontaneous abortion patients by CNV-seq. And collected correlated data, including maternal age, gestational week, and Body Mass Index (BMI), and analyzed their relationship with the CNVs. Results Out of the 395 cases, 67.09% of the fetuses had chromosomal abnormalities, including numerical abnormalities, structural abnormalities, and mosaicisms. Maternal age was found to be an important risk factor for fetal chromosomal abnormalities, with the proportion of autosomal trisomy in abnormal karyotypes increasing with maternal age, while polyploidy decreased. The proportion of abnormal karyotypes with mosaic decreased as gestational age increased, while the frequency of polyploidy and sex chromosome monosomy increased. Gene enrichment analysis identified potential miscarriage candidate genes and functions, as well as pathogenic genes and pathways associated with unexplained miscarriage among women aged below or over 35 years old. Based on our study, it can be inferred that there is an association between BMI values and the risk of recurrent miscarriage caused by chromosomal abnormalities. Discussion Overall, these findings provide important insights into the understanding of spontaneous abortion and have implications for the development of personalized interventions for patients with abnormal karyotypes.
Collapse
Affiliation(s)
- Wei Bai
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Qi Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Zhi Lin
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Jin Ye
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiaoqi Shen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Linshuang Zhou
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenpin Cai
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
5
|
Chen CP, Wu FT, Wang LK, Pan YT, Lee MS, Wang W. High-level mosaic trisomy 14 at amniocentesis in a pregnancy associated with congenital heart defects and intrauterine growth restriction on fetal ultrasound. Taiwan J Obstet Gynecol 2023; 62:594-596. [PMID: 37407202 DOI: 10.1016/j.tjog.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
OBJECTIVE We present high-level mosaic trisomy 14 at amniocentesis in a pregnancy associated with congenital heart defects (CHD) and intrauterine growth restriction (IUGR). CASE REPORT A 34-year-old, primigravid woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. This pregnancy was conceived by in vitro fertilization and embryo transfer (IVF-ET). Amniocentesis revealed a karyotype of 47,XX,+14[9]/46,XX[13], consistent with 40.9% (9/22 colonies) mosaicism for trisomy 14. Simultaneous array comparative genomic hybridization (aCGH) on the DNA extracted from uncultured amniocytes revealed 61% mosaicism for trisomy 14. Prenatal ultrasound at 22 weeks of gestation showed a malformed fetus with double outlet of right ventricle (DORV), ventricular septal defect (VSD), pulmonary stenosis and severe IUGR with the growth parameters equivalent to 18 weeks of gestation. The pregnancy was terminated at 23 weeks of gestation, and a 278-g female fetus was delivered with facial dysmorphism of hypertelorism, low-set small ears and wide depressed nasal bridge. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis on the DNA extracted from parental bloods, cord blood, umbilical cord and placenta confirmed a maternal origin of the extra chromosome 14 and excluded uniparental disomy (UPD) 14. The umbilical cord had a karyotype of 47,XX,+14[7]/ 46,XX[13], and the placenta had a karyotype of 47,XX,+14[4]/46,XX[36]. CONCLUSIONS High-level mosaic trisomy 14 at amniocentesis can be associated with abnormal ultrasound findings of CHD and IUGR.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Liang-Kai Wang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Ting Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Meng-Shan Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Prenatal diagnosis and molecular cytogenetic characterization of a familial small supernumerary marker chromosome derived from the acrocentric chromosome 14/22. Taiwan J Obstet Gynecol 2022; 61:364-367. [DOI: 10.1016/j.tjog.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
|
7
|
Juriaans AF, Kerkhof GF, Hokken-Koelega ACS. The Spectrum of the Prader-Willi-like Pheno- and Genotype: A Review of the Literature. Endocr Rev 2022; 43:1-18. [PMID: 34460908 DOI: 10.1210/endrev/bnab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic syndrome, caused by the loss of expression of the paternal chromosome 15q11-q13 region. Over the past years, many cases of patients with characteristics similar to PWS, but without a typical genetic aberration of the 15q11-q13 region, have been described. These patients are often labelled as Prader-Willi-like (PWL). PWL is an as-yet poorly defined syndrome, potentially affecting a significant number of children and adults. In the current clinical practice, patients labelled as PWL are mostly left without treatment options. Considering the similarities with PWS, children with PWL might benefit from the same care and treatment as children with PWS. This review gives more insight into the pheno- and genotype of PWL and includes 86 papers, containing 368 cases of patients with a PWL phenotype. We describe mutations and aberrations for consideration when suspicion of PWS remains after negative testing. The most common genetic diagnoses were Temple syndrome (formerly known as maternal uniparental disomy 14), Schaaf-Yang syndrome (truncating mutation in the MAGEL2 gene), 1p36 deletion, 2p deletion, 6q deletion, 6q duplication, 15q deletion, 15q duplication, 19p deletion, fragile X syndrome, and Xq duplication. We found that the most prevalent symptoms in the entire group were developmental delay/intellectual disability (76%), speech problems (64%), overweight/obesity (57%), hypotonia (56%), and psychobehavioral problems (53%). In addition, we propose a diagnostic approach to patients with a PWL phenotype for (pediatric) endocrinologists. PWL comprises a complex and diverse group of patients, which calls for multidisciplinary care with an individualized approach.
Collapse
Affiliation(s)
- Alicia F Juriaans
- National Reference Center for Prader-Willi Syndrome and Prader-Willi-like, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus Medical Center, The Netherlands.,Dutch Growth Research Foundation, Rotterdam, The Netherlands
| | - Gerthe F Kerkhof
- National Reference Center for Prader-Willi Syndrome and Prader-Willi-like, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus Medical Center, The Netherlands
| | - Anita C S Hokken-Koelega
- National Reference Center for Prader-Willi Syndrome and Prader-Willi-like, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus Medical Center, The Netherlands.,Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Prasasya R, Grotheer KV, Siracusa LD, Bartolomei MS. Temple syndrome and Kagami-Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Hum Mol Genet 2021; 29:R107-R116. [PMID: 32592473 DOI: 10.1093/hmg/ddaa133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Temple syndrome (TS) and Kagami-Ogata syndrome (KOS) are imprinting disorders caused by absence or overexpression of genes within a single imprinted cluster on human chromosome 14q32. TS most frequently arises from maternal UPD14 or epimutations/deletions on the paternal chromosome, whereas KOS most frequently arises from paternal UPD14 or epimutations/deletions on the maternal chromosome. In this review, we describe the clinical symptoms and genetic/epigenetic features of this imprinted region. The locus encompasses paternally expressed protein-coding genes (DLK1, RTL1 and DIO3) and maternally expressed lncRNAs (MEG3/GTL2, RTL1as and MEG8), as well as numerous miRNAs and snoRNAs. Control of expression is complex, with three differentially methylated regions regulating germline, placental and tissue-specific transcription. The strong conserved synteny between mouse chromosome 12aF1 and human chromosome 14q32 has enabled the use of mouse models to elucidate imprinting mechanisms and decipher the contribution of genes to the symptoms of TS and KOS. In this review, we describe relevant mouse models and highlight their value to better inform treatment options for long-term management of TS and KOS patients.
Collapse
Affiliation(s)
- Rexxi Prasasya
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen V Grotheer
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Linda D Siracusa
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Garza-Mayén G, Ulloa-Avilés V, Villarroel CE, Navarrete-Meneses P, Lieberman-Hernández E, Abreu-González M, Márquez-Quiroz L, Azotla-Vilchis C, Cifuentes-Goches JC, Del Castillo-Ruiz V, Durán-McKinster C, Pérez-Vera P, Salas-Labadía C. UPD(14)mat and UPD(14)mat in concomitance with mosaic small supernumerary marker chromosome 14 in two new patients with Temple syndrome. Eur J Med Genet 2021; 64:104199. [PMID: 33746039 DOI: 10.1016/j.ejmg.2021.104199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Temple syndrome (TS14) can be originated by maternal uniparental disomy (UPD(14)mat), paternal deletion, or epimutation, leading to disturbances in 14q32.2 imprinted region. The most frequent phenotypic manifestations are prenatal and postnatal growth failure, hypotonia, developmental delay, small hands/feet, precocious puberty, and truncal obesity. However, the diagnosis can be challenging due to the clinical overlap with other imprinting disorders such as Silver-Russell or Prader-Willi syndromes. Although rare, TS14 has been also reported in patients with concomitant UPD(14)mat and mosaic trisomy 14. In the present report, the clinical and genetic profiles of two new patients with TS14 are described. SNParray and MS-MLPA, allowed the determination of segmental UPD(14)mat and the hypomethylation of MEG3 gene. Additionally, in one of our patients we also observed by cytogenetics a small supernumerary marker chromosome that led to partial trisomy 14 in mosaic. Only few patients with concomitant UPD(14)mat and mosaic partial trisomy 14 have been reported. Our patients share cardinal TS14 phenotypic features that are associated to the genetic abnormalities detected; however, we also observed some clinical features such as fatty liver disease that had not previously been reported as part of this syndrome. The detailed clinical, cytogenetical and molecular description of these two new patients, contributes to a more accurately delineation of this syndrome.
Collapse
Affiliation(s)
- G Garza-Mayén
- Departamento de Genética Humana, Instituto Nacional de Pediatría. Ciudad de México, Mexico.
| | - V Ulloa-Avilés
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría. Ciudad de México, 04530, Mexico
| | - C E Villarroel
- Departamento de Genética Humana, Instituto Nacional de Pediatría. Ciudad de México, Mexico
| | - P Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría. Ciudad de México, 04530, Mexico
| | - E Lieberman-Hernández
- Departamento de Genética Humana, Instituto Nacional de Pediatría. Ciudad de México, Mexico
| | - M Abreu-González
- Genos Médica, Centro Especializado en Genética. Ciudad de México, Mexico
| | - L Márquez-Quiroz
- Genos Médica, Centro Especializado en Genética. Ciudad de México, Mexico
| | - C Azotla-Vilchis
- Genos Médica, Centro Especializado en Genética. Ciudad de México, Mexico
| | | | - V Del Castillo-Ruiz
- Departamento de Genética Humana, Instituto Nacional de Pediatría. Ciudad de México, Mexico
| | - C Durán-McKinster
- Departamento de Dermatología, Instituto Nacional de Pediatría. Ciudad de México, Mexico
| | - P Pérez-Vera
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría. Ciudad de México, 04530, Mexico.
| | - C Salas-Labadía
- Laboratorio de Genética y Cáncer, Departamento de Genética Humana, Instituto Nacional de Pediatría. Ciudad de México, 04530, Mexico.
| |
Collapse
|
10
|
Lindgren V, Cobian K, Bhat G. Temple syndrome resulting from uniparental disomy is undiagnosed by a methylation assay due to low-level mosaicism for trisomy 14. Am J Med Genet A 2021; 185:1538-1543. [PMID: 33595182 DOI: 10.1002/ajmg.a.62128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023]
Abstract
We describe a patient with Temple syndrome resulting from maternal uniparental disomy of chromosome 14 who also has low-level mosaicism for trisomy 14. UPD was initially suspected when SNP microarray analysis detected a large region of homozygosity on chromosome 14 and the patient's clinical features were consistent with the phenotype of upd(14)mat. However, SNP arrays cannot prove UPD, as homozygosity may also result from identity by descent. Methylation assays diagnose imprinting disorders such as Prader-Willi, Angelman and Temple syndromes; they detect methylation defects that occur in imprinted loci, which have parent-of-origin-specific expression and have the advantage of making a diagnosis without parental samples. However, in this patient methylation analysis using endpoint PCR detected biparental inheritance. Therefore, sequencing analysis was performed and diagnosed upd(14)mat. Re-examination of the microarray suggested that the explanation for the discrepancy between the array and methylation testing was low-level mosaicism for trisomy 14 and fluorescence in situ hybridization testing detected a trisomic cell line. Thus, this patient's Temple syndrome is a result of a maternal M1 error, which gave a trisomic zygote, followed by loss of the paternal chromosome 14 in an early mitotic division to give maternal UPD with low-level mosaicism for trisomy 14. The methylation assay detected the paternal allele in the trisomic line. The diagnostic failure of the methylation assay in this patient highlights a significant shortcoming of methylation endpoint analysis, especially for Temple syndrome, and underscores the need to use other methods in cases with mosaicism.
Collapse
Affiliation(s)
- Valerie Lindgren
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Katherine Cobian
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gifty Bhat
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Mohamed AM, Eid MM, Eid OM, Hussein SH, Mossaad AM, Abdelfattah U, Sharafuddin MA, El Halafawy YM, Elbanoby TM, Abdel-Salam GMH. Two Abnormal Cell Lines of Trisomy 14 and t(X;14) with Skewed X-Inactivation. Cytogenet Genome Res 2020; 160:124-133. [PMID: 32187602 DOI: 10.1159/000506430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2020] [Indexed: 01/29/2023] Open
Abstract
Trisomy 14 is incompatible with live, but there are several patients reported with mosaic trisomy 14. We aimed to study the pattern of X inactivation and its effect on a translocated autosome and to find out an explanation of the involvement of chromosome 14 in 2 different structural chromosomal abnormalities. We report on a girl with frontal bossing, hypertelorism, low-set ears, micrognathia, cleft palate, congenital heart disease, and abnormal skin pigmentations. The patient displayed iris, choroidal, and retinal coloboma and agenesis of the corpus callosum and cerebellar vermis hypoplasia. Cytogenetic analysis revealed a karyotype 45,X,der(X)t(X;14)(q24;q11)[85]/46,XX,rob(14;14)(q10;q10),+14[35]. Array-CGH for blood and buccal mucosa showed high mosaic trisomy 14 and an Xq deletion. MLPA detected trisomy 14 in blood and buccal mucosa and also showed normal methylation of the imprinting center. FISH analysis confirmed the cell line with trisomy 14 (30%) and demonstrated the mosaic deletion of the Xq subtelomere in both tissues. There was 100% skewed X inactivation for the t(X;14). SNP analysis of the patient showed no region of loss of heterozygosity on chromosome 14. Also, genotype call analysis of the patient and her parents showed heterozygous alleles of chromosome 14 with no evidence of uniparental disomy. Our patient had a severe form of mosaic trisomy 14. We suggest that this cytogenetic unique finding that involved 2 cell lines with structural abnormalities of chromosome 14 occurred in an early postzygotic division. These 2 events may have happened separately or maybe there is a kind of trisomy or monosomy rescue due to dynamic cytogenetic interaction between different cell lines to compensate for gene dosage.
Collapse
|
12
|
Daniels EG, Alders M, Lezzerini M, McDonald A, Peters M, Kuijpers TW, Lakeman P, Houtkooper RH, MacInnes AW. A uniparental isodisomy event introducing homozygous pathogenic variants drives a multisystem metabolic disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004457. [PMID: 31653659 PMCID: PMC6913148 DOI: 10.1101/mcs.a004457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023] Open
Abstract
Uniparental isodisomy (UPiD) is a rare genetic event that occurs when two identical copies of a single chromosome are inherited from one parent. Here we report a patient with a severe, multisystem metabolic disorder who inherited two copies of Chromosome 12 from her father. He was a heterozygous carrier of a variant in the muscle-specific enzyme 6-phosphofructokinase (PFKM) gene and of a truncating variant in the pseudouridine synthase 1 (PUS1) gene (both on Chromosome 12), resulting in a homozygous state of these mutations in his daughter. The PFKM gene functions in glycolysis and is linked to Tarui syndrome. The PUS1 gene functions in mitochondrial tRNA processing and is linked to myopathy, lactic acidosis, and sideroblastic anemia (MLASA). Analysis of human dermal fibroblasts, which do not express PFKM, revealed a loss of PUS1 mRNA and PUS1 protein only in the patient cells compared to healthy controls. The patient cells also revealed a reduction of the mitochondrial-encoded protein MTCO1, whereas levels of the nuclear-encoded SDHA remained unchanged, suggesting a specific impairment of mitochondrial translation. Further destabilization of these cells is suggested by the altered levels of BAX, BCL-2, and TP53 proteins, alterations that become augmented upon exposure of the cells to DNA damage. The results illustrate the efficacy of UPiD events to reveal rare pathogenic variants in human disease and demonstrate how these events can lead to cellular destabilization.
Collapse
Affiliation(s)
- Eileen G Daniels
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marco Lezzerini
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Andrew McDonald
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marjolein Peters
- Department of Pediatric Hematology, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Phillis Lakeman
- Department of Clinical Genetics, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Alyson W MacInnes
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
13
|
Yakoreva M, Kahre T, Pajusalu S, Ilisson P, Žilina O, Tillmann V, Reimand T, Õunap K. A New Case of a Rare Combination of Temple Syndrome and Mosaic Trisomy 14 and a Literature Review. Mol Syndromol 2018; 9:182-189. [PMID: 30181735 DOI: 10.1159/000489446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
Temple syndrome (TS14) is a relatively recently discovered imprinting disorder caused by abnormal expression of genes at the locus 14q32. The underlying cause of this syndrome is maternal uniparental disomy of chromosome 14 (UPD(14)mat). Trisomy of chromosome 14 is one of the autosomal trisomies; in humans, it is only compatible with live birth in mosaic form. Although UPD(14)mat and mosaic trisomy 14 can arise from the same cellular mechanism, a combination of both has been currently reported only in 8 live-born cases. Hereby, we describe a patient in whom only UPD(14)mat-associated TS14 was primarily diagnosed. Due to the patient's atypical features (for TS14), additional analyses were performed and low-percent mosaic trisomy 14 was detected. It can be expected that the described combination of 2 etiologically related conditions is actually more prevalent. Additional chromosomal and molecular investigations are indicated for every patient with UPD(14)mat-associated TS14 with atypical clinical presentation.
Collapse
Affiliation(s)
- Maria Yakoreva
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Piret Ilisson
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia
| | - Olga Žilina
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic, Tartu University Hospital, University of Tartu, Tartu, Estonia.,Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
A severely short-statured girl with 47,XX, + 14/46,XX,upd(14)mat, mosaicism. J Hum Genet 2018; 63:377-381. [DOI: 10.1038/s10038-017-0381-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/05/2017] [Accepted: 10/14/2017] [Indexed: 11/08/2022]
|
15
|
Haug MG, Brendehaug A, Houge G, Kagami M, Ogata T. Mosaic upd(14)pat in a patient with mild features of Kagami-Ogata syndrome. Clin Case Rep 2017; 6:91-95. [PMID: 29375845 PMCID: PMC5771875 DOI: 10.1002/ccr3.1300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/29/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
We report a Norwegian girl with mild clinical features of Kagami-Ogata syndrome (KOS) and mosaic upd(14)pat. To our knowledge, this is the first report describing a mosaic patient with KOS. These results imply that mosaic uniparental disomy should be examined in patients with mild features of imprinted disorders.
Collapse
Affiliation(s)
- Marte G Haug
- Department of Medical Genetics St Olav's Hospital Trondheim Norway
| | - Atle Brendehaug
- Department of Medical Genetics Haukeland University Hospital Bergen Norway
| | - Gunnar Houge
- Department of Medical Genetics Haukeland University Hospital Bergen Norway
| | - Masayo Kagami
- Department of Molecular Endocrinology National Research Institute for Child Health and Development Tokyo Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology National Research Institute for Child Health and Development Tokyo Japan.,Department of Pediatrics Hamamatsu University School of Medicine Hamamatsu Japan
| |
Collapse
|
16
|
Vera-Rodriguez M, Rubio C. Assessing the true incidence of mosaicism in preimplantation embryos. Fertil Steril 2017; 107:1107-1112. [PMID: 28433370 DOI: 10.1016/j.fertnstert.2017.03.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Modern technologies applied to the field of preimplantation genetic diagnosis for aneuploidy screening (PGD-A) have improved the ability to identify the presence of mosaicism. Consequently, new questions can now be addressed regarding the potential impact of embryo mosaicism on diagnosis accuracy and the feasibility of considering mosaic embryos for transfer. The frequency of chromosomal mosaicism in products of conception (POCs) of early miscarriages has been reported to be low. Mosaic embryos with an aneuploid inner cell mass are typically lost during the first trimester owing to spontaneous miscarriages. Most of the mosaics in established pregnancies would derive from placental mosaicism or placental aneuploidy, and mosaic embryos with aneuploid inner cell mass should be lost mainly due to first-trimester spontaneous miscarriages. The well described clinical outcomes of live births from mosaic embryos suggest a wide spectrum of phenotypes, from healthy to severely impaired. Therefore, there is a need to balance the risks of discarding a possibly viable embryo with that of transferring an embryo that may ultimately have a lower implantation potential.
Collapse
Affiliation(s)
| | - Carmen Rubio
- Igenomix and Igenomix Foundation, Valencia, Spain.
| |
Collapse
|
17
|
Bertini V, Fogli A, Bruno R, Azzarà A, Michelucci A, Mattina T, Bertelloni S, Valetto A. Maternal Uniparental Disomy 14 (Temple Syndrome) as a Result of a Robertsonian Translocation. Mol Syndromol 2017; 8:131-138. [PMID: 28588434 DOI: 10.1159/000456062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Maternal uniparental disomy of chromosome 14 (upd(14)mat) or Temple syndrome is an imprinting disorder associated with a relatively mild phenotype. The absence of specific congenital malformations makes this condition underdiagnosed in clinical practice. A boy with a de novo robertsonian translocation 45,XY,rob(13;14)(q10;q10) is reported; a CGH/SNP array showed a loss of heterozygosity in 14q11.2q13.1. The final diagnosis of upd(14)mat was made by microsatellite analysis, which showed a combination of heterodisomy and isodisomy for different regions of chromosome 14. Obesity after initial failure to thrive developed, while compulsive eating habits were not present, which was helpful for the clinical differential diagnosis of Prader-Willi syndrome. In addition, the boy presented with many phenotypic features associated with upd(14)mat along with hypoesthesia to pain, previously unreported in this disorder, and bilateral cryptorchidism, also rarely described. These features, as well as other clinical manifestations (i.e., truncal obesity, altered pubertal timing), may suggest a hypothalamic-pituitary involvement. A detailed cytogenetic and molecular characterization of the genomic rearrangement is presented. Early genetic diagnosis permits a specific follow-up of children with upd(14)mat in order to optimize the long-term outcome.
Collapse
Affiliation(s)
- Veronica Bertini
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Antonella Fogli
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Rossella Bruno
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy.,Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessia Azzarà
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Angela Michelucci
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Teresa Mattina
- Centro di Riferimento per la Prevenzione Diagnosi e Cura delle Malattie Genetiche Rare, Università di Catania, Catania, Italy
| | - Silvano Bertelloni
- Adolescent Medicine, Pediatric Division, Department of Obstetrics, Gynecology and Pediatrics, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| | - Angelo Valetto
- Molecular Genetics Unit, Azienda Ospedaliero-Universitaria (AOU) Pisana, Pisa, Italy
| |
Collapse
|
18
|
Zhang S, Qin H, Wang J, OuYang L, Luo S, Fu C, Fan X, Su J, Chen R, Xie B, Hu X, Chen S, Shen Y. Maternal uniparental disomy 14 and mosaic trisomy 14 in a Chinese boy with moderate to severe intellectual disability. Mol Cytogenet 2016; 9:66. [PMID: 27559361 PMCID: PMC4995659 DOI: 10.1186/s13039-016-0274-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Both maternal uniparental disomy 14 (UPD(14)mat) and mosaic trisomy 14 are rare events in live individuals. A combination of the two events in one individual is rarely encountered. Only six live-born cases have so far been reported. Case presentation Here we reported a case of concomitant UPD(14)mat and mosaic trisomy 14 in a 10-year-old Chinese patient. Most clinical features of our patient were consistent with those previous reported for UPD(14)mat cases, which include prenatal and postnatal growth retardation, neonatal hypotonia, feeding difficulty, intellectual disability, truncal obesity, small hands and feet, short stature, and mild facial dysmorphism, but our patient showed more severe intellectual disability and no sign of precocious puberty. SNP array analysis revealed a mixture of chromosome 14 maternal isodisomy with heterodisomy and a low level trisomy mosaicism of whole chromsome 14 in blood and hyperpigmented skin samples, whereas only UPD(14)mat was detected in normal skin sample. Cytogenetic analysis identified one trisomy 14 cell in 100 metaphase of peripheral blood lymphocytes (47,XX, +14[1]/46,XX[99]). Conclusions To our knowledge, this is the first case of a patient with UPD(14)mat and mosaic trisomy 14 reported in a Chinese patient. The definitive genetic diagnosis is beneficial for genetic counseling and clinical management of our patient, and for improving our understanding of the genotype-phenotype correlations of concomitant UPD(14)mat and mosaic trisomy 14. Electronic supplementary material The online version of this article (doi:10.1186/s13039-016-0274-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shujie Zhang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Haisong Qin
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Jin Wang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Luping OuYang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Shiyu Luo
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Chunyun Fu
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Xin Fan
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Jiasun Su
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Rongyu Chen
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Bobo Xie
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Xuyun Hu
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Shaoke Chen
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Yiping Shen
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China.,Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
19
|
Balbeur S, Grisart B, Parmentier B, Sartenaer D, Leonard PE, Ullmann U, Boulanger S, Leroy L, Ngendahayo P, Lungu-Silviu C, Lysy P, Maystadt I. Trisomy rescue mechanism: the case of concomitant mosaic trisomy 14 and maternal uniparental disomy 14 in a 15-year-old girl. Clin Case Rep 2016; 4:265-71. [PMID: 27014449 PMCID: PMC4771849 DOI: 10.1002/ccr3.501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/21/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022] Open
Abstract
Maternal uniparental disomy of chromosome 14 (upd(14)mat) is responsible for a Prader–Willi‐like syndrome with precocious puberty. Although upd(14) is often hypothesized to result from trisomy rescue mechanism, T14 cell lines are usually not found with postnatal cytogenetic investigations. We report the coexistence of both chromosomal abnormalities in a 15‐year‐old girl.
Collapse
Affiliation(s)
- Samuel Balbeur
- Department of Human Genetics Institut de Pathologie et de Génétique Gosselies Belgium
| | - Bernard Grisart
- Department of Human Genetics Institut de Pathologie et de Génétique Gosselies Belgium
| | - Benoit Parmentier
- Department of Human Genetics Institut de Pathologie et de Génétique Gosselies Belgium
| | - Daniel Sartenaer
- Department of Human Genetics Institut de Pathologie et de Génétique Gosselies Belgium
| | | | - Urielle Ullmann
- Department of Human Genetics Institut de Pathologie et de Génétique Gosselies Belgium
| | - Sébastien Boulanger
- Department of Human Genetics Institut de Pathologie et de Génétique Gosselies Belgium
| | - Luc Leroy
- Department of Anatomo-Pathology Institut de Pathologie et de Génétique Gosselies Belgium
| | - Placide Ngendahayo
- Department of Anatomo-Pathology Institut de Pathologie et de Génétique Gosselies Belgium
| | | | - Philippe Lysy
- Department of Pediatrics Endocrinology Cliniques Universitaires Saint-Luc Bruxelles Belgium
| | - Isabelle Maystadt
- Department of Human Genetics Institut de Pathologie et de Génétique Gosselies Belgium
| |
Collapse
|