1
|
Wang MJ, Schioppo D, Donovan BM, Febres-Cordero DA, Connolly S, Robinson J, Duffy CR. Lethal Skeletal Dysplasia in Fetus With Novel COL1A1 Variant. Prenat Diagn 2024; 44:1412-1415. [PMID: 39198999 DOI: 10.1002/pd.6652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Affiliation(s)
- Michelle J Wang
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Davia Schioppo
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bridget M Donovan
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Daniela A Febres-Cordero
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Susan Connolly
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Julian Robinson
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Cassandra R Duffy
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Maternal Fetal Care Center, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Yang K, Liu Y, Wu J, Zhang J, Hu HY, Yan YS, Chen WQ, Yang SF, Sun LJ, Sun YQ, Wu QQ, Yin CH. Prenatal Cases Reflect the Complexity of the COL1A1/2 Associated Osteogenesis Imperfecta. Genes (Basel) 2022; 13:genes13091578. [PMID: 36140746 PMCID: PMC9498730 DOI: 10.3390/genes13091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Osteogenesis imperfecta (OI) is a rare mendelian skeletal dysplasia with autosomal dominant or recessive inheritance pattern, and almost the most common primary osteoporosis in prenatal settings. The diversity of clinical presentation and genetic etiology in prenatal OI cases presents a challenge to counseling yet has seldom been discussed in previous studies. Methods: Ten cases with suspected fetal OI were enrolled and submitted to a genetic detection using conventional karyotyping, chromosomal microarray analysis (CMA), and whole-exome sequencing (WES). Sanger sequencing was used as the validation method for potential diagnostic variants. In silico analysis of specific missense variants was also performed. Results: The karyotyping and CMA results of these cases were normal, while WES identified OI-associated variants in the COL1A1/2 genes in all ten cases. Six of these variants were novel. Additionally, four cases here exhibited distinctive clinical and/or genetic characteristics, including the situations of intrafamilial phenotypic variability, parental mosaicism, and “dual nosogenesis” (mutations in collagen I and another gene). Conclusion: Our study not only expands the spectrum of COL1A1/2-related OI, but also highlights the complexity that occurs in prenatal OI and the importance of clarifying its pathogenic mechanisms.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yan Liu
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Jue Wu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100039, China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China
| | - Hua-ying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100083, China
| | - You-sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Wen-qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China
| | - Shu-fa Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Li-juan Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yong-qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Qing-qing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Correspondence: (Q.-q.W.); (C.-h.Y.)
| | - Cheng-hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Correspondence: (Q.-q.W.); (C.-h.Y.)
| |
Collapse
|
3
|
Zhytnik L, Simm K, Salumets A, Peters M, Märtson A, Maasalu K. Reproductive options for families at risk of Osteogenesis Imperfecta: a review. Orphanet J Rare Dis 2020; 15:128. [PMID: 32460820 PMCID: PMC7251694 DOI: 10.1186/s13023-020-01404-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis Imperfecta (OI) is a rare genetic disorder involving bone fragility. OI patients typically suffer from numerous fractures, skeletal deformities, shortness of stature and hearing loss. The disorder is characterised by genetic and clinical heterogeneity. Pathogenic variants in more than 20 different genes can lead to OI, and phenotypes can range from mild to lethal forms. As a genetic disorder which undoubtedly affects quality of life, OI significantly alters the reproductive confidence of families at risk. The current review describes a selection of the latest reproductive approaches which may be suitable for prospective parents faced with a risk of OI. The aim of the review is to alleviate suffering in relation to family planning around OI, by enabling prospective parents to make informed and independent decisions. Main body The current review provides a comprehensive overview of possible reproductive options for people with OI and for unaffected carriers of OI pathogenic genetic variants. The review considers reproductive options across all phases of family planning, including pre-pregnancy, fertilisation, pregnancy, and post-pregnancy. Special attention is given to the more modern techniques of assisted reproduction, such as preconception carrier screening, preimplantation genetic testing for monogenic diseases and non-invasive prenatal testing. The review outlines the methodologies of the different reproductive approaches available to OI families and highlights their advantages and disadvantages. These are presented as a decision tree, which takes into account the autosomal dominant and autosomal recessive nature of the OI variants, and the OI-related risks of people without OI. The complex process of decision-making around OI reproductive options is also discussed from an ethical perspective. Conclusion The rapid development of molecular techniques has led to the availability of a wide variety of reproductive options for prospective parents faced with a risk of OI. However, such options may raise ethical concerns in terms of methodologies, choice management and good clinical practice in reproductive care, which are yet to be fully addressed.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Zhytnik L, Maasalu K, Reimand T, Duy BH, Kõks S, Märtson A. Inter- and Intrafamilial Phenotypic Variability in Individuals with Collagen-Related Osteogenesis Imperfecta. Clin Transl Sci 2020; 13:960-971. [PMID: 32166892 PMCID: PMC7485955 DOI: 10.1111/cts.12783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder also known as a “brittle bone disease.” Around 90% of patients with OI harbor loss‐of‐function or dominant negative pathogenic variants in the COL1A1 and COL1A2 genes, which code for collagen type I α1 and α2 chains. Collagen‐related forms of the disorder are classified as Sillence OI types I–IV. OI phenotype expression ranges from mild to lethal. The current study aims to evaluate associations between interfamilial and intrafamilial phenotypic variability and genotype characteristics of patients with collagen‐related OI. The study was based on a systematic review of collagen‐related OI cases from the University of Tartu OI database (n = 137 individuals from 81 families) and the Dalgleish database (n = 479 individuals). Interfamilial variability analysis has shown that 17.74% of all studied OI‐related variants were associated with the same phenotype. The remaining 82.26% of pathogenic variants were associated with variable phenotypes. Additionally, higher interfamilial variability correlated with the COL1A1 gene (P value = 0.001) and dominant‐negative variants (P value = 0.0007). Within intrafamilial variability, 32.81% families had increasing or decreasing OI phenotype severity across generations. Higher intrafamilial variability of phenotypes correlated with the collagen I dominant negative variants (P value = 0.0246). The current study shows that, in line with other phenotype modification factors, OI interfamilial and intrafamilial diversity potential is associated with the genotype characteristics of the OI‐causing pathogenic variants. The results of the current study may advance knowledge of OI phenotype modification as well as assist family planning and the evaluation of disease progression in subsequent generations.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Clinic of Traumatology and Orthopedics, Tartu University Hospital, Tartu, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Binh Ho Duy
- Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Aare Märtson
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Clinic of Traumatology and Orthopedics, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
5
|
Alonso-Gonzalez A, Rodriguez-Fontenla C, Carracedo A. De novo Mutations (DNMs) in Autism Spectrum Disorder (ASD): Pathway and Network Analysis. Front Genet 2018; 9:406. [PMID: 30298087 PMCID: PMC6160549 DOI: 10.3389/fgene.2018.00406] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder (NDD) defined by impairments in social communication and social interactions, accompanied by repetitive behavior and restricted interests. ASD is characterized by its clinical and etiological heterogeneity, which makes it difficult to elucidate the neurobiological mechanisms underlying its pathogenesis. Recently, de novo mutations (DNMs) have been recognized as strong source of genetic causality. Here, we review different aspects of the DNMs associated with ASD, including their functional annotation and classification. In addition, we also focus on the most recent advances in this area, such as the detection of PZMs (post-zygotic mutations), and we outline the main bioinformatics tools commonly employed to study these. Some of these approaches available allow DNMs to be analyzed in the context of gene networks and pathways, helping to shed light on the biological processes underlying ASD. To end this review, a brief insight into the future perspectives for genetic studies into ASD will be provided.
Collapse
Affiliation(s)
- Aitana Alonso-Gonzalez
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago, Spain
| | - Cristina Rodriguez-Fontenla
- Grupo de Medicina Xenómica, CIBERER, Centre for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago, Spain.,Grupo de Medicina Xenómica, CIBERER, Centre for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago, Spain
| |
Collapse
|