1
|
Sun JL, Ren FD, Chen YZ, Li Z. Cu 2+@metal-organic framework-derived amphiphilic sandwich catalysts for enhanced hydrogenation selectivity of ketenes at the oil-water interface. NANOSCALE 2023; 15:15415-15426. [PMID: 37702995 DOI: 10.1039/d3nr02212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Selective catalysis has always been an essential process for manufacturing various fine chemicals, such as food additives, pharmaceuticals and perfumes. Practically, pure target products are difficult to obtain even after complex purification procedures during industrial production. The development of a cost-effective, highly chemoselective and long-life catalyst may be an attractive solution, but such a catalyst is elusive. Herein, a novel class of amphiphilic N-doped carbon (NC), featuring graphitic carbon (GC) and highly dispersed Cu@Co NPs, was fabricated via simple calcination of a Cu2+-doped bimetallic metal-organic framework (MOF) precusor directly. Compared with monometallic Co@GC/NC, the side reaction of CO bond hydrogenation is obviously restrained, and thus, pure target product can be systematically obtained by Cu@Co@GC/NC, highlighting the high selectivity of Cu. More importantly, an amphiphilic characteristic in Cu@Co@GC/NC is a significant knob to integrate organic substrates with water very well. This amphiphilic material shows great potential as a field-deployable pathway for dispersible metal catalysts in organic systems.
Collapse
Affiliation(s)
- Jia-Lu Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Feng-Di Ren
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Yu-Zhen Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| |
Collapse
|
2
|
Zhang P, Xu S, Wang Y, Zhang W, Li W, Wei C, Zhang P, Miao S. Fabrication of Pd/Mg 2 P 2 O 7 via a Struvite-Template Way from Wastewater and Application as Chemoselective Catalyst in Hydrogenation of Nitroarenes. Chemistry 2021; 27:10666-10676. [PMID: 34009699 DOI: 10.1002/chem.202100684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/06/2022]
Abstract
A highly efficient heterogeneous catalyst Pd/Mg2 P2 O7 was fabricated by combining palladium nanoparticles (PdNPs) and mesoporous Mg2 P2 O7 fibers/rods. Mg2 P2 O7 fibers with ultra-high specific surface area were prepared from struvite as templates, which were synthesized from waste water containing N- and P-containing pollutants. This strategy provided a novel pathway for developing advanced catalysts from eutrophication-polluted water. The composite Pd/Mg2 P2 O7 showed brilliant performance in selective hydrogenation of nitro aromatics to give anilines. As an example of nitrobenzene hydrogenation, the conversion to aniline and selectivity were found to reach almost 100 % at a temperature of T=90 °C and under a pressure of P H 2 =2.0 MPa. The superior performance was found to originate from PdNPs, which were boosted by electron transfer afforded by the nanofiber Mg2 P2 O7 supports. The favorable adsorption of withdrawing groups (-NO2 ) was realized by synergistic effects between Pd and oxygen vacancies provided by pyrolysis of struvite. The catalyst remained stable after cycles of reuse with little degradation in catalytic performance.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Jilin University, Changchun, 130022, P. R. China
| | - Shaonan Xu
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Jilin University, Changchun, 130022, P. R. China
| | - Yan Wang
- School of Materials Science & Engineering Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- School of Materials Science & Engineering Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Wenqing Li
- Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun, 130061, P. R. China
| | - Cundi Wei
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Jilin University, Changchun, 130022, P. R. China
| | - Peiping Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Jilin University, Changchun, 130022, P. R. China
| | - Shiding Miao
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Jilin University, Changchun, 130022, P. R. China
| |
Collapse
|
3
|
Alam AM, Shon YS. Water-Soluble Noble Metal Nanoparticle Catalysts Capped with Small Organic Molecules for Organic Transformations in Water. ACS APPLIED NANO MATERIALS 2021; 4:3294-3318. [PMID: 34095774 PMCID: PMC8171274 DOI: 10.1021/acsanm.1c00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This article recaps a variety of interesting catalytic studies based on solubilized and freely movable noble metal nanoparticle catalysts employed for organic reactions in either pure water or water-organic biphasic systems. Small organic ligand-capped metal nanoparticles are fundamentally attractive materials due to their enormous potential as a well-defined system that can provide spatial control near active catalytic sites. The nanoparticle catalysts are first grouped based on the synthetic method (direct reduction, phase transfer, and redispersion) and then again based on the type of reaction such as alkene hydrogenation, arene hydrogenation, nitroaromatic reduction, carbon-carbon coupling reactions, etc. The impacts of various ligands on the catalytic activity and selectivity of semi-heterogeneous nanoparticles in water are discussed in detail. The catalytic systems using polymers, dendrimers, and ionic liquids as supporting or protecting materials are excluded from the subject of this review.
Collapse
Affiliation(s)
- Al-Mahmnur Alam
- Department of Chemistry and Biochemistry and the Keck Energy and Materials Program (KEMP), California State University, Long Beach, Long Beach, California 90840, United States
| | - Young-Seok Shon
- Department of Chemistry and Biochemistry and the Keck Energy and Materials Program (KEMP), California State University, Long Beach, Long Beach, California 90840, United States
| |
Collapse
|
4
|
Wang Z, Reddy CB, Zhou X, Ibrahim JJ, Yang Y. Phosphine-Built-in Porous Organic Cage for Stabilization and Boosting the Catalytic Performance of Palladium Nanoparticles in Cross-Coupling of Aryl Halides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53141-53149. [PMID: 33175493 DOI: 10.1021/acsami.0c16765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Herein, we report first a novel phosphine-containing porous organic cage (PPOC) from a [2 + 3] self-assembly of triphenyl phosphine-based trialdehyde and (S,S)-1,2-diaminocyclohexane via dynamic imine chemistry, which was employed as a porous material for the controlled growth of palladium nanoparticles (NPs) due to the strong affinity of Pd to the phosphine ligand based on the principle of hard and soft acids and bases. Comprehensive characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, NMR, and X-ray absorption spectroscopy reveal that ultrafine Pd NPs with narrow size distribution (1.7 ± 0.3 nm) and enhanced surface electronic density via a strong interaction between NPs and phosphine were homogeneously dispersed in the PPOC. The resultant catalyst Pd@PPOC exhibits remarkably superior catalytic activities for various cross-coupling reactions of aryl halides, for example, Sonogashira, Suzuki, Heck, and carbonylation. The catalytic activity of Pd@PPOC outperforms the state-of-the-art Pd complexes and other Pd NPs supported on N-containing porous cages under identical conditions, owing to the enhanced surface electronic density of Pd NPs and their high stability and dispersibility in solution. More importantly, Pd@PPOC is highly stable and easily recycled and reused without loss of their catalytic activity. This work provides a new functional POC with extended potentials in catalysis and material science.
Collapse
Affiliation(s)
- Zhaozhan Wang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - C Bal Reddy
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xin Zhou
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jessica Juweriah Ibrahim
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
5
|
Plutnar J, Sofer Z, Pumera M. Layered black phosphorus as a reducing agent - decoration with group 10 elements. RSC Adv 2020; 10:36452-36458. [PMID: 35517940 PMCID: PMC9057018 DOI: 10.1039/d0ra06884e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022] Open
Abstract
Black phosphorus is prone to surface oxidation under ambient conditions. This attribute is often seen as a negative property of this interesting material. However, its proneness to oxidation – thus the reductive properties – can also be employed in modification of its surface and in preparation of composite materials. Here we describe the process of decoration of BP particles with nickel, palladium and platinum in form of a phosphide or in metallic form, respectively. The deposits have forms of films or nanoparticles and the reported method represents a general way of modifying the surface of black phosphorus with metals or their respective compounds for desired applications. Nanoparticles or films of group 10 transition metals or their phosphides can be produced on the surface of black phosphorus (BP) from the solutions of the respective M(ii) salts (M = Ni, Pd, Pt) utilizing BP as a reducing agent.![]()
Collapse
Affiliation(s)
- Jan Plutnar
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology in Prague Technická 5 Prague 6 166 28 Czech Republic www.twitter.com/PumeraGroup
| | - Zdeněk Sofer
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology in Prague Technická 5 Prague 6 166 28 Czech Republic www.twitter.com/PumeraGroup
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology in Prague Technická 5 Prague 6 166 28 Czech Republic www.twitter.com/PumeraGroup.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology Purkyňova 123 61200 Brno Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University No. 91 Hsueh-Shih Road Taichung Taiwan
| |
Collapse
|
6
|
Vanni M, Serrano-Ruiz M, Telesio F, Heun S, Banchelli M, Matteini P, Mio AM, Nicotra G, Spinella C, Caporali S, Giaccherini A, D’Acapito F, Caporali M, Peruzzini M. Black Phosphorus/Palladium Nanohybrid: Unraveling the Nature of P-Pd Interaction and Application in Selective Hydrogenation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:5075-5080. [PMID: 31656368 PMCID: PMC6804426 DOI: 10.1021/acs.chemmater.9b00851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/21/2019] [Indexed: 05/31/2023]
Abstract
The burgeoning interest in two-dimensional (2D) black phosphorus (bP) contributes to the expansion of its applications in numerous fields. In the present study, 2D bP is used as a support for homogeneously dispersed palladium nanoparticles directly grown on it by a wet chemical process. Electron energy loss spectroscopy-scanning transmission electron microscopy analysis evidences a strong interaction between palladium and P atoms of the bP nanosheets. A quantitative evaluation of this interaction comes from the X-ray absorption spectroscopy measurements that show a very short Pd-P distance of 2.26 Å, proving for the first time the existence of an unprecedented Pd-P coordination bond of a covalent nature. Additionally, the average Pd-P coordination number of about 1.7 reveals that bP acts as a polydentate phosphine ligand toward the surface of the Pd atoms of the nanoparticles, thus preventing their agglomeration and inferring with structural stability. These unique properties result in a superior performance in the catalytic hydrogenation of chloronitroarenes to chloroanilines, where a higher chemoselectivity in comparison to other heterogeneous catalyst based on palladium has been observed.
Collapse
Affiliation(s)
- Matteo Vanni
- CNR-ICCOM, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | | - Francesca Telesio
- NEST
Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | - Stefan Heun
- NEST
Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | | | - Paolo Matteini
- CNR-IFAC, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | | | - Giuseppe Nicotra
- CNR-IMM
Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| | - Corrado Spinella
- CNR-IMM
Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| | - Stefano Caporali
- Department
of Industrial Engineering, University of
Florence, Via di S. Marta
3, 50139 Florence, 50139, Italy
| | - Andrea Giaccherini
- Department
of Earth Sciences, University of Florence, Via La Pira 4, 50121 Firenze, Italy
| | - Francesco D’Acapito
- CNR-IOM-OGG,
c/o European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, Cedex 9 France
| | - Maria Caporali
- CNR-ICCOM, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
7
|
Guerriero A, Peruzzini M, Gonsalvi L. Coordination chemistry of 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (PTA) and derivatives. Part III. Variations on a theme: Novel architectures, materials and applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Joumaa A, Chen S, Vincendeau S, Gayet F, Poli R, Manoury E. Rhodium-catalyzed aqueous biphasic hydrogenation of alkenes with amphiphilic phosphine-containing core-shell polymers. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Maung MS, Dinh T, Salazar C, Shon YS. Unsupported Micellar Palladium Nanoparticles for Biphasic Hydrogenation and Isomerization of Hydrophobic Allylic Alcohols in Water. Colloids Surf A Physicochem Eng Asp 2017; 513:367-372. [PMID: 28579696 DOI: 10.1016/j.colsurfa.2016.10.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article presents the evaluation of water-soluble palladium nanoparticles with hydrophobic active sites that are ideal for the biphasic colloidal catalysis of water-insoluble organic substrates in aqueous solution. Palladium nanoparticles stabilized with ω-carboxylate-functionalized alkanethiolate are first synthesized using ω-carboxylate-S-alkylthiosulfate as their ligand precursor. The biphasic catalysis is carried out for the reaction of hydrophobic allylic alcohols without using any additional mixing solvent or surfactant, which results in the complete consumption of substrates under the atmospheric pressure of H2 gas and at room temperature in less than 24 h. Systematic investigations on the influence of pH and substrate size are also performed to examine the utility of these thiolate-capped palladium nanoparticles as structurally stable and water-soluble micellar catalysts for the biphasic reaction.
Collapse
Affiliation(s)
- May S Maung
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250, Bellflower Blvd., Long Beach, California 90840, United States
| | - Tommy Dinh
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250, Bellflower Blvd., Long Beach, California 90840, United States
| | - Christian Salazar
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250, Bellflower Blvd., Long Beach, California 90840, United States
| | - Young-Seok Shon
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250, Bellflower Blvd., Long Beach, California 90840, United States
| |
Collapse
|
10
|
New water-soluble palladium(II) iodide complexes derived from N-protonated or N-alkyl-1,3,5-triaza-7-phosphaadamantanes: Synthesis, crystal structure and catalytic properties in aqua media. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Bulut S, Fei Z, Siankevich S, Zhang J, Yan N, Dyson PJ. Aqueous-phase hydrogenation of alkenes and arenes: The growing role of nanoscale catalysts. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Chahdoura F, Favier I, Pradel C, Mallet-Ladeira S, Gómez M. Palladium nanoparticles stabilised by PTA derivatives in glycerol: Synthesis and catalysis in a green wet phase. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2014.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Highly selective hydrogenation of phenol and derivatives over Pd catalysts supported on SiO2 and γ-Al2O3 in aqueous media. CATAL COMMUN 2014. [DOI: 10.1016/j.catcom.2014.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Liu X, Zhao X, Lu M. Novel polymer supported iminopyridylphosphine palladium (Ⅱ) complexes: An efficient catalyst for Suzuki–Miyaura and Heck cross-coupling reactions. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kapdi AR, Fairlamb IJS. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chem Soc Rev 2014; 43:4751-77. [PMID: 24723061 DOI: 10.1039/c4cs00063c] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much success has been achieved with platinum-based chemotherapeutic agents, i.e. through interactions with DNA. The long-term application of Pt complexes is thwarted by issues, leading scientists to examine other metals such as palladium which could exhibit complementary modes of action (given emphasis wherever known). Over the last 10 years several research groups have focused on the application of an eclectic array of palladium complexes (of the type PdX2L2, palladacycles and related structures) as potential anti-cancer agents. This review therefore provides readers with an up to date account of the advances that have taken place over the past several decades.
Collapse
Affiliation(s)
- Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, 302, Advance Centre, Nathalal Parekh Road, Matunga, Mumbai-400019, India.
| | | |
Collapse
|
16
|
Gavia DJ, Maung MS, Shon YS. Water-soluble Pd nanoparticles synthesized from ω-carboxyl-S-alkanethiosulfate ligand precursors as unimolecular micelle catalysts. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12432-40. [PMID: 24246150 PMCID: PMC4072038 DOI: 10.1021/am4035043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This report describes a two-phase synthesis of water-soluble carboxylate-functionalized alkanethiolate-capped Pd nanoparticles from ω-carboxyl-S-alkanethiosulfate sodium salts. The two-phase methodology using the thiosulfate ligand passivation protocol allowed a highly specific control over the surface ligand coverage of these nanoparticles, which are lost in a one-phase aqueous system because of the base-catalyzed hydrolysis of thiosulfate to thiolate. Systematic synthetic variations investigated in this study included the concentration of ω-carboxyl-S-alkanethiosulfate ligand precursors and reducing agent, NaBH4, and the overall ligand chain length. The resulting water-soluble Pd nanoparticles were isolated and characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), (1)H NMR, UV-vis, and FT-IR spectroscopy. Among different variations, a decrease in the molar equivalent of NaBH4 resulted in a reduction in the surface ligand density while maintaining a similar particle core size. Additionally, reducing the chain length of the thiosulfate ligand precursor also led to the formation of stable nanoparticles with a lower surface coverage. Since the metal core size of these Pd nanoparticle variations remained quite consistent, direct correlation studies between ligand properties and catalytic activities against hydrogenation/isomerization of allyl alcohol could be performed. Briefly, Pd nanoparticles dissolved in water favored the hydrogenation of allyl alcohol to 1-propanol whereas Pd nanoparticles heterogeneously dispersed in chloroform exhibited a rather high selectivity towards the isomerization product (propanal). The results suggested that the surrounding ligand environments, such as the ligand structure, conformation, and surface coverage, were crucial in determining the overall activity and selectivity of the Pd nanoparticle catalysts.
Collapse
Affiliation(s)
| | | | - Young-Seok Shon
- Corresponding Author: . Tel: 562-985-4466. Fax: 562-985-8547
| |
Collapse
|