1
|
Wagassa AN, Shifa TA, Bansiwal A, Zereffa EA. Kinetics, isotherm, mechanism, and recyclability of novel nano-sized Ce 4+-doped Ni-Al layered double hydroxide for defluoridation of aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119084-119094. [PMID: 37922081 DOI: 10.1007/s11356-023-30723-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Excessive fluoride removal from aqueous solutions is of utmost importance as it has an adverse impact on human health. This study investigates the defluoridation efficiency of a novel nano-sized Ce+4-doped Ni/Al layered double hydroxide (Ni-Al-Ce LDH) for aqueous solutions. The synthesized Ni-Al-Ce LDH exhibited a well-defined nanoscale plate-like morphology and a high surface area with an average size of 11.51 nm, which contributed to its enhanced fluoride adsorption capacity. XRD, SEM, HRTEM, and BET studies confirmed these characteristics. XPS analysis confirmed the presence of Ce4+ ions within the Ni-Al LDH. The experimental results indicated that the process of defluoridation followed a pseudo-second-order model of kinetics, suggesting a chemisorption mechanism. The fluoride adsorption isotherms demonstrated well fits to the Freundlich, Langmuir, and Jovanovic models, indicating both monolayer and multilayer fluoride adsorption on the Ce-doped Ni-Al LDH. The maximum adsorption capacity was found to be 238.27 mg/g (Langmuir) and 130.73 mg/g (Jovanovic) at pH 6.0 and 25 °C. The proposed mechanisms for fluoride adsorption on the LDH include ion exchange, surface complexation, hydrogen bonding, and ligand exchange. The Ni-Al-Ce LDH nanomaterial exhibited good recyclability, maintaining 71% of the fluoride adsorption efficiency even after four consecutive cycles. This study highlights the significant role of Ce doping in improving the performance of Ni-Al LDH as a defluoridation adsorbent.
Collapse
Affiliation(s)
- Ararso Nagari Wagassa
- CSIR-National Environmental Engineering Institute, Nehru Marg, Nagpur, 440020, India
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Tofik Ahmed Shifa
- Department of Molecular Science and Nanosystem, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia Mestre, Italy
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Institute, Nehru Marg, Nagpur, 440020, India.
| | - Enyew Amare Zereffa
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| |
Collapse
|
2
|
Hussien AGS, Polychronopoulou K. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3400. [PMID: 36234525 PMCID: PMC9565677 DOI: 10.3390/nano12193400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
The dry reforming of methane (DRM) reaction is among the most popular catalytic reactions for the production of syngas (H2/CO) with a H2:CO ratio favorable for the Fischer-Tropsch reaction; this makes the DRM reaction important from an industrial perspective, as unlimited possibilities for production of valuable products are presented by the FT process. At the same time, simultaneously tackling two major contributors to the greenhouse effect (CH4 and CO2) is an additional contribution of the DRM reaction. The main players in the DRM arena-Ni-supported catalysts-suffer from both coking and sintering, while the activation of the two reactants (CO2 and CH4) through different approaches merits further exploration, opening new pathways for innovation. In this review, different families of materials are explored and discussed, ranging from metal-supported catalysts, to layered materials, to organic frameworks. DRM catalyst design criteria-such as support basicity and surface area, bimetallic active sites and promoters, and metal-support interaction-are all discussed. To evaluate the reactivity of the surface and understand the energetics of the process, density-functional theory calculations are used as a unique tool.
Collapse
Affiliation(s)
- Aseel G. S. Hussien
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Main Campus, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Main Campus, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
3
|
Optimization of Synthesis Conditions of Ni/SBA-15 Catalysts: Confined Nanoparticles and Improved Stability in Dry Reforming of Methane. Catalysts 2020. [DOI: 10.3390/catal11010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite its economic and environmental advantages, the dry reforming of methane using supported Ni-based catalysts remains challenging due to problems of metal particle sintering and carbon deposition, which lead to loss in catalytic activity. In this study, different silica supports, containing 5 wt% nickel, were prepared and characterized by N2 sorption, XRD, TPR, and TEM/SEM, in addition to Raman and TGA/MS for the spent catalysts. Different synthesis conditions were thus varied, like nickel deposition method, nature of nickel precursor salt, conditions for thermal activation, and nature of support. The results showed that enhanced metal dispersion, good confinement, and efficient stabilization of the active phase inside the pores can be achieved by using a well-structured mesoporous support. Moreover, it was demonstrated that carbon resistance can be improved when small nickel particles are well confined inside the pores. The strategies that affect the final dispersion of nickel particles, their consequent confinement inside (or deposition outside) the mesopores and the resulting catalytic activity and stability include mainly the application of hydrothermal treatment to the support, the variation of the nature of nickel precursor salt, and the conditions for thermal activation. General guidelines for the preparation of suitable Ni-based catalysts highly active and stable for dry reforming of methane (DRM) are thus presented in this work.
Collapse
|
4
|
Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. REACTIONS 2020. [DOI: 10.3390/reactions1020013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dry reforming of methane (DRM) reaction has drawn much interest due to the reduction of greenhouse gases and production of syngas. Coking and sintering have hindered the large-scale operations of Ni-based catalysts in DRM reactions at high temperatures. Smart designs of Ni-based catalysts are comprehensively summarized in fourth aspects: surface regulation, oxygen defects, interfacial engineering, and structural optimization. In each part, details of the designs and anti-deactivation mechanisms are elucidated, followed by a summary of the main points and the recommended strategies to improve the catalytic performance, energy efficiency, and utilization rate.
Collapse
|
5
|
Rodriguez‐Gomez A, Lopez‐Martin A, Ramirez A, Gascon J, Caballero A. Elucidating the Promotional Effect of Cerium in the Dry Reforming of Methane. ChemCatChem 2020. [DOI: 10.1002/cctc.202001527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alberto Rodriguez‐Gomez
- Instituto de Ciencia de Materiales de Sevilla (CSIC-University of Seville) and Departamento de Quimica Inorganica University of Seville 41092 Seville Spain
- KAUST Catalysis Center (KCC) Advanced Catalytic Materials King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Angeles Lopez‐Martin
- Instituto de Ciencia de Materiales de Sevilla (CSIC-University of Seville) and Departamento de Quimica Inorganica University of Seville 41092 Seville Spain
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC) Advanced Catalytic Materials King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC) Advanced Catalytic Materials King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Alfonso Caballero
- Instituto de Ciencia de Materiales de Sevilla (CSIC-University of Seville) and Departamento de Quimica Inorganica University of Seville 41092 Seville Spain
| |
Collapse
|
6
|
Song Y, Ozdemir E, Ramesh S, Adishev A, Subramanian S, Harale A, Albuali M, Fadhel BA, Jamal A, Moon D, Choi SH, Yavuz CT. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020; 367:777-781. [PMID: 32054760 DOI: 10.1126/science.aav2412] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
Abstract
Large-scale carbon fixation requires high-volume chemicals production from carbon dioxide. Dry reforming of methane could provide an economically feasible route if coke- and sintering-resistant catalysts were developed. Here, we report a molybdenum-doped nickel nanocatalyst that is stabilized at the edges of a single-crystalline magnesium oxide (MgO) support and show quantitative production of synthesis gas from dry reforming of methane. The catalyst runs more than 850 hours of continuous operation under 60 liters per unit mass of catalyst per hour reactive gas flow with no detectable coking. Synchrotron studies also show no sintering and reveal that during activation, 2.9 nanometers as synthesized crystallites move to combine into stable 17-nanometer grains at the edges of MgO crystals above the Tammann temperature. Our findings enable an industrially and economically viable path for carbon reclamation, and the "Nanocatalysts On Single Crystal Edges" technique could lead to stable catalyst designs for many challenging reactions.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Ercan Ozdemir
- Graduate School of EEWS, KAIST, Daejeon, 34141 Korea.,Institute of Nanotechnology, Gebze Technical University, Kocaeli, 41400 Turkey
| | | | | | | | - Aadesh Harale
- Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
| | - Mohammed Albuali
- Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
| | - Bandar Abdullah Fadhel
- Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia.,Saudi-Aramco-KAIST CO2 Management Center, KAIST, Daejeon, 34141 Korea
| | - Aqil Jamal
- Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia.,Saudi-Aramco-KAIST CO2 Management Center, KAIST, Daejeon, 34141 Korea
| | - Dohyun Moon
- Pohang Accelerator Laboratory, Pohang, 37673 Korea
| | - Sun Hee Choi
- Pohang Accelerator Laboratory, Pohang, 37673 Korea
| | - Cafer T Yavuz
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea. .,Graduate School of EEWS, KAIST, Daejeon, 34141 Korea.,Saudi-Aramco-KAIST CO2 Management Center, KAIST, Daejeon, 34141 Korea.,Department of Chemistry, KAIST, Daejeon, 34141 Korea
| |
Collapse
|
7
|
Xiang X, Zhao H, Yang J, Zhao J, Yan L, Song H, Chou L. Promoting Effect of KIT‐6 to Support Ni‐Ce
0.8
Gd
0.2
O
2‐
δ
as Efficient Coke‐Resistant Catalysts for Carbon Dioxide Reforming of Methane. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xianmei Xiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
- Lanzhou Institute of Chemical Physics University of Chinese Academy of Sciences 100049 Beijing PR China
| | - Huahua Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Jian Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Jun Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Liang Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Huanling Song
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
- Dalian National Laboratory for Clean Energy Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian PR China
| | - Lingjun Chou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
- Dalian National Laboratory for Clean Energy Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian PR China
| |
Collapse
|
8
|
Jiang P, Zhao J, Han Y, Wang X, Pei Y, Zhang Z, Liu Y, Ren J. Highly Active and Dispersed Ni/Al2O3 Catalysts for CO Methanation Prepared by the Cation–Anion Double-Hydrolysis Method: Effects of Zr, Fe, and Ce Promoters. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Jiang
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Jinxian Zhao
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Yahong Han
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Xuhui Wang
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Yongli Pei
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Zhilei Zhang
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Yongmei Liu
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024, China
| | - Jun Ren
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024, China
| |
Collapse
|
9
|
Gonçalves AAS, Faustino PB, Assaf JM, Jaroniec M. One-Pot Synthesis of Mesoporous Ni-Ti-Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6079-6092. [PMID: 28117577 DOI: 10.1021/acsami.6b15507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One-pot synthesis of nanostructured ternary oxides of Ni, Al, and Ti was designed and performed via evaporation induced self-assembly (EISA). For the purpose of comparison, analogous oxides were also prepared by the impregnation method. The resulting materials were applied in two catalytic reactions: steam reforming of ethanol (SRE) for H2 production (subjected to prior activation with H2) and ethanol dehydration (ED; used without prior activation), to in situ analyze carbon accumulation by ethylene depletion when ethanol interacts with acidic sites present on the support. Modification of Ni-Al mixed oxides with titania was shown to have several benefits. CO2, NH3, and propylamine sorption data indicate a decrease in the strength of acidic and basic sites after addition of titania, which in turn slowed down the carbon accumulation during the ED reaction. These changes in interactions between ethanol and byproducts with the support led to different reaction pathways in SRE, indicating that the catalysts obtained by EISA with titania addition showed higher ethylene selectivity and CO2/CO ratios. The opposite was observed for the impregnated catalysts, which were less coke-stable during ED reactions and showed no ethylene selectivity in SRE. Carbon formed during ED reactions was shown to be thermodynamically less favorable and easier to decompose in the presence of titania. All catalysts studied displayed similar and high selectivities (∼80%) and yields (∼5.3 molH2/molethanol) toward H2, which place them among the most active and selective catalysts for SRE. These results indicate the importance of tailoring the support surface acidity to achieve high reforming performance and higher selectivity toward SRE, one of the key processes to produce cleaner and efficient fuels. For an efficient reforming process, the yield of byproducts is low but still they affect the catalyst stability in the long-run, thus this work may impact future studies toward development of near-zero coke catalysts.
Collapse
Affiliation(s)
- Alexandre A S Gonçalves
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44240, United States
| | - Patrícia B Faustino
- Department of Chemical Engineering, Federal University of Sao Carlos , Sao Carlos, Sao Paulo13565-905, Brazil
| | - José M Assaf
- Department of Chemical Engineering, Federal University of Sao Carlos , Sao Carlos, Sao Paulo13565-905, Brazil
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44240, United States
| |
Collapse
|
10
|
Xiang X, Zhao H, Yang J, Zhao J, Yan L, Song H, Chou L. One-Pot Synthesis of Ordered Mesoporous NiSiAl Oxides for Catalyzing CO2Reforming of CH4. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xianmei Xiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou P. R. China
- University of Chinese Academy of Sciences; 100049 Beijing P. R. China
| | - Huahua Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| | - Jian Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| | - Jun Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| | - Liang Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| | - Huanling Song
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| | - Lingjun Chou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| |
Collapse
|
11
|
Tian H, Li X, Zeng L, Gong J. Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01221] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hao Tian
- Key Laboratory
for Green
Chemical Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xinyu Li
- Key Laboratory
for Green
Chemical Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Liang Zeng
- Key Laboratory
for Green
Chemical Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory
for Green
Chemical Technology of Ministry of Education, School of Chemical Engineering
and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|