• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4598788)   Today's Articles (9759)   Subscriber (49356)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Moraru IT, Martínez-Prieto LM, Coppel Y, Chaudret B, Cusinato L, Del Rosal I, Poteau R. A combined theoretical/experimental study highlighting the formation of carbides on Ru nanoparticles during CO hydrogenation. NANOSCALE 2021;13:6902-6915. [PMID: 33885491 DOI: 10.1039/d0nr08735a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
2
Effects of Structure and Particle Size of Iron, Cobalt and Ruthenium Catalysts on Fischer–Tropsch Synthesis. REACTIONS 2021. [DOI: 10.3390/reactions2010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
3
Wang H, Lu J. A Review on Particle Size Effect in Metal‐Catalyzed Heterogeneous Reactions. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000205] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
4
Chai S, Men Y, Wang J, Liu S, Song Q, An W, Kolb G. Boosting CO2 methanation activity on Ru/TiO2 catalysts by exposing (001) facets of anatase TiO2. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
5
Formation mechanism of highly dispersed semi-embedded ruthenium nanoparticles in porous carbon matrix determined by in situ temperature-programmed infrared spectroscopy. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62958-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
6
Chen W, Zijlstra B, Filot IAW, Pestman R, Hensen EJM. Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer-Tropsch Catalyst. ChemCatChem 2017;10:136-140. [PMID: 29399207 PMCID: PMC5768026 DOI: 10.1002/cctc.201701203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Indexed: 11/07/2022]
7
Comas-Vives A, Larmier K, Copéret C. Understanding surface site structures and properties by first principles calculations: an experimental point of view! Chem Commun (Camb) 2017;53:4296-4303. [DOI: 10.1039/c7cc01101f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
8
Foppa L, Copéret C, Comas-Vives A. Increased Back-Bonding Explains Step-Edge Reactivity and Particle Size Effect for CO Activation on Ru Nanoparticles. J Am Chem Soc 2016;138:16655-16668. [DOI: 10.1021/jacs.6b08697] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Liuzzi D, Pérez-Alonso FJ, Fierro JLG, Rojas S, van Wijk FL, Roghair I, Annaland MVS, Fernandez E, Viviente JL, Tanaka DP. Catalytic membrane reactor for the production of biofuels. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
Liuzzi D, Pérez-Alonso FJ, García-García FJ, Calle-Vallejo F, Fierro JLG, Rojas S. Identifying the time-dependent predominance regimes of step and terrace sites for the Fischer–Tropsch synthesis on ruthenium based catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00476h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
In-situ study of the promotional effect of chlorine on the Fischer–Tropsch synthesis with Ru/Al 2 O 3. J Catal 2015. [DOI: 10.1016/j.jcat.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
12
Guo XN, Jiao ZF, Jin GQ, Guo XY. Photocatalytic Fischer–Tropsch Synthesis on Graphene-Supported Worm-Like Ruthenium Nanostructures. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00697] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
13
Matsubu JC, Yang VN, Christopher P. Isolated Metal Active Site Concentration and Stability Control Catalytic CO2 Reduction Selectivity. J Am Chem Soc 2015;137:3076-84. [DOI: 10.1021/ja5128133] [Citation(s) in RCA: 434] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA