1
|
Song G, Li C, Wang T, Lim KH, Hu F, Cheng S, Hondo E, Liu S, Kawi S. Hierarchical Hollow Carbon Particles with Encapsulation of Carbon Nanotubes for High Performance Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305517. [PMID: 37670220 DOI: 10.1002/smll.202305517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Indexed: 09/07/2023]
Abstract
A novel and sustainable carbon-based material, referred to as hollow porous carbon particles encapsulating multi-wall carbon nanotubes (MWCNTs) (CNTs@HPC), is synthesized for use in supercapacitors. The synthesis process involves utilizing LTA zeolite as a rigid template and dopamine hydrochloride (DA) as the carbon source, along with catalytic decomposition of methane (CDM) to simultaneously produce MWCNTs and COx -free H2 . The findings reveal a distinctive hierarchical porous structure, comprising macropores, mesopores, and micropores, resulting in a total specific surface area (SSA) of 913 m2 g-1 . The optimal CNTs@HPC demonstrates a specific capacitance of 306 F g-1 at a current density of 1 A g-1 . Moreover, this material demonstrates an electric double-layer capacitor (EDLC) that surpasses conventional capabilities by exhibiting additional pseudocapacitance characteristics. These properties are attributed to redox reactions facilitated by the increased charge density resulting from the attraction of ions to nickel oxides, which is made possible by the material's enhanced hydrophilicity. The heightened hydrophilicity can be attributed to the presence of residual silicon-aluminum elements in CNTs@HPC, a direct outcome of the unique synthesis approach involving nickel phyllosilicate in CDM. As a result of this synthesis strategy, the material possesses excellent conductivity, enabling rapid transportation of electrolyte ions and delivering outstanding capacitive performance.
Collapse
Affiliation(s)
- Guoqiang Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province, 550003, China
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Tian Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Feiyang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Shuwen Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Emmerson Hondo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Shaomin Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| |
Collapse
|
2
|
Goksu A, Li H, Liu J, Duyar MS. Nanoreactor Engineering Can Unlock New Possibilities for CO 2 Tandem Catalytic Conversion to C-C Coupled Products. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300004. [PMID: 37287598 PMCID: PMC10242537 DOI: 10.1002/gch2.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Climate change is becoming increasingly more pronounced every day while the amount of greenhouse gases in the atmosphere continues to rise. CO2 reduction to valuable chemicals is an approach that has gathered substantial attention as a means to recycle these gases. Herein, some of the tandem catalysis approaches that can be used to achieve the transformation of CO2 to C-C coupled products are explored, focusing especially on tandem catalytic schemes where there is a big opportunity to improve performance by designing effective catalytic nanoreactors. Recent reviews have highlighted the technical challenges and opportunities for advancing tandem catalysis, especially highlighting the need for elucidating structure-activity relationships and mechanisms of reaction through theoretical and in situ/operando characterization techniques. In this review, the focus is on nanoreactor synthesis strategies as a critical research direction, and discusses these in the context of two main tandem pathways (CO-mediated pathway and Methanol-mediated pathway) to C-C coupled products.
Collapse
Affiliation(s)
- Ali Goksu
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Haitao Li
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jian Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Melis S. Duyar
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| |
Collapse
|
3
|
Ru/CeO2/MgO Catalysts for Enhanced Ammonia Synthesis Efficiency. Top Catal 2023. [DOI: 10.1007/s11244-023-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Gao X, Ashok J, Kawi S. A review on roles of pretreatment atmospheres for the preparation of efficient Ni-based catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Park KS, Kwon JH, Yu JS, Jeong SY, Jo DH, Chung CH, Bae JW. Catalytically stable monodispersed multi-core Ni-Co nanoparticles encapsulated with SiO2 shells for dry reforming of CH4 with CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Sintering resistant cubic ceria yolk Ni phyllosilicate shell catalyst for methane dry reforming. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
State-of-art modifications of heterogeneous catalysts for CO2 methanation - active sites, surface basicity and oxygen defects. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gao X, Lin X, Xie X, Li J, Wu X, Li Y, Kawi S. Modification strategies of heterogeneous catalysts for water-gas shift reactions. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00537e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Featured by high energy density, hydrogen has been deemed as a clean and renewable energy source compared with conventional fossil fuels. Water-gas shift reaction (WGSR) exhibits great potential in the...
Collapse
|
9
|
Lee CH, Kwon BW, Oh JH, Kim S, Han J, Nam SW, Yoon SP, Lee KB, Ham HC. Integration of dry-reforming and sorption-enhanced water gas shift reactions for the efficient production of high-purity hydrogen from anthropogenic greenhouse gases. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Khairudin NF, Mohammadi M, Mohamed AR. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29157-29176. [PMID: 33550559 DOI: 10.1007/s11356-021-12794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
This study deals with the development of alumina-supported cobalt (Co/Al2O3) catalysts with remarkable performance in dry reforming of methane (DRM) and least carbon deposition. The influence of Co content, calcination, and reduction temperatures on the physicochemical attributes and catalyst activity of the developed catalysts was extensively studied. For this purpose, several characterization techniques including ICP-MS, H2 pulse chemisorption, HRTEM, H2-TPR, N2 adsorption desorption, and TGA were implemented, and the properties of the developed catalysts were carefully analyzed. The impact of reaction temperature, feed gas ratio, and gas hourly space velocity (GHSV) on the reactants conversion and products yield was investigated. Use of 10%Co/Al2O3 catalyst, calcined at 500°C and reduced under H2 at 900°C in DRM reaction at 850°C, CH4/CO2 ratio of 1:1, and GHSV of 6 L.g-1.h-1 resulted in a remarkable catalytic activity and sustainable performance in long-term operation where great CO2 (96%) and CH4 (98%) conversions and high H2 (83%) and CO (91%) yields with a negligible carbon deposition (3 wt%) were attained in 100-h on-stream reaction. The good performance of the developed catalyst in DRM reaction was attributed to the small Co particle size with well-dispersion on the alumina support which increased the catalytic activity and also the strong metal-support interaction which inhibited any serious metal sintering and enhanced the catalyst stability.
Collapse
Affiliation(s)
- Nor Fazila Khairudin
- Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Maedeh Mohammadi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148, Iran
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
11
|
Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review. Catalysts 2021. [DOI: 10.3390/catal11020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Copper phyllosilicates-derived catalysts (CuPS-cats) have been intensively explored in the past two decades due to their promising activity in carbonyls hydrogenation. However, CuPS-cats have not been completely reviewed. This paper focuses on the aspects concerning CuPS-cats from synthesis methods, effects of preparation conditions, and dopant to catalytic applications of CuPS-cats. The applications of CuPS-cats include the hydrogenation of carboxylates, carboxylic acids, carbonates, formyls, and CO2 to their respective alcohols. Besides, important factors such as the Cu dispersion, Cu+ and Cu0 surface areas, particles size, interaction between Cu and supports and dopants, morphologies, and spatial effect on catalytic performance of CuPS-cats are discussed. The deactivation and remedial actions to improve the stability of CuPS-cats are summarized. It ends up with the challenges and prospective by using this type of catalyst.
Collapse
|
12
|
Xue Y, Xu L, Chen M, Wu CE, Cheng G, Wang N, Hu X. Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01039e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of Ni-based confinement catalysts has been proposed and developed to address the challenge of the thermal sintering of metallic Ni active sites during CRM by the space and/or lattice confinement effects.
Collapse
Affiliation(s)
- Yingying Xue
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Cai-e Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, P.R. China
| |
Collapse
|
13
|
Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. REACTIONS 2020. [DOI: 10.3390/reactions1020013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dry reforming of methane (DRM) reaction has drawn much interest due to the reduction of greenhouse gases and production of syngas. Coking and sintering have hindered the large-scale operations of Ni-based catalysts in DRM reactions at high temperatures. Smart designs of Ni-based catalysts are comprehensively summarized in fourth aspects: surface regulation, oxygen defects, interfacial engineering, and structural optimization. In each part, details of the designs and anti-deactivation mechanisms are elucidated, followed by a summary of the main points and the recommended strategies to improve the catalytic performance, energy efficiency, and utilization rate.
Collapse
|
14
|
Jangam A, Das S, Dewangan N, Hongmanorom P, Hui WM, Kawi S. Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Wang F, Han K, Yu W, Zhao L, Wang Y, Wang X, Yu H, Shi W. Low Temperature CO 2 Reforming with Methane Reaction over CeO 2-Modified Ni@SiO 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35022-35034. [PMID: 32644767 DOI: 10.1021/acsami.0c09371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing high performance catalysts for the low temperature CO2 reforming with methane (CRM) reaction is a challenge due to the occurrences of metal sintering and carbon deposition. In this study, we synthesized CeO2 modified Ni@SiO2 catalysts with excellent properties of sintering-resistance and low carbon deposition for high performance low temperature CRM. The Ni@SiO2-CeO2 catalysts displayed a size effect from tiny Ni nanoparticles to enhance CRM performance and a confinement effect from silica encapsulation to limit Ni sintering and exhibited oxygen storage capacity from ceria to reduce carbon deposition. Performance and characterization results revealed that the Ni@SiO2-CeO2-W catalyst with smaller ceria size exhibited higher performance and lower carbon deposition than the Ni@SiO2-CeO2-E catalyst with bigger ceria size, because the smaller ceria nanoparticles activated more CO2. This work provided a simple strategy to deposit small sized ceria on the Ni@SiO2 catalyst surface for the performance enhancement of low temperature CRM.
Collapse
Affiliation(s)
- Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Kaihang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weishu Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Lu M, Zhang X, Deng J, Kuboon S, Faungnawakij K, Xiao S, Zhang D. Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00537a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts was demonstrated.
Collapse
Affiliation(s)
- Meirong Lu
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Xiaoyu Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Jiang Deng
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Sanchai Kuboon
- National Nanotechnology Center
- National Science and Technology Development Agency
- 111 Thailand Science Park
- Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center
- National Science and Technology Development Agency
- 111 Thailand Science Park
- Thailand
| | - Shengxiong Xiao
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
- P.R. China
| | - Dengsong Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
17
|
Wang Z, Chen T, Dewangan N, Li Z, Das S, Pati S, Li Z, Lin JYS, Kawi S. Catalytic mixed conducting ceramic membrane reactors for methane conversion. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00177e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schematic of catalytic mixed conducting ceramic membrane reactors for various reactions: (a) O2 permeable ceramic membrane reactor; (b) H2 permeable ceramic membrane reactor; (c) CO2 permeable ceramic membrane reactor.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Tianjia Chen
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Nikita Dewangan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Ziwei Li
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Sonali Das
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Subhasis Pati
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Zhan Li
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Jerry Y. S. Lin
- Chemical Engineering
- School for Engineering of Matter, Transport and Energy
- Arizona State University
- Tempe
- USA
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
18
|
Das S, Pérez-Ramírez J, Gong J, Dewangan N, Hidajat K, Gates BC, Kawi S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 2020; 49:2937-3004. [DOI: 10.1039/c9cs00713j] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An in-depth assessment of properties of core–shell catalysts and their application in the thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2into synthesis gas and valuable hydrocarbons.
Collapse
Affiliation(s)
- Sonali Das
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Javier Pérez-Ramírez
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Institute of Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Collaborative Innovation Center for Chemical Science & Engineering
- Tianjin University
- Tianjin
| | - Nikita Dewangan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Kus Hidajat
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Bruce C. Gates
- Department of Chemical Engineering
- University of California
- Davis
- USA
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
19
|
Shoji S, Peng X, Imai T, Murphin Kumar PS, Higuchi K, Yamamoto Y, Tokunaga T, Arai S, Ueda S, Hashimoto A, Tsubaki N, Miyauchi M, Fujita T, Abe H. Topologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methane. Chem Sci 2019; 10:3701-3705. [PMID: 31015913 PMCID: PMC6461125 DOI: 10.1039/c8sc04965c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
A rooted catalyst, Ni#Y2O3, successfully inhibits the growth of carbon nanotubes in DRM.
Methane reforming at low temperatures is of growing importance to mitigate the environmental impact of the production of synthesis gas, but it suffers from short catalyst lifetimes due to the severe deposition of carbon byproducts. Herein, we introduce a new class of topology-tailored catalyst in which tens-of-nanometer-thick fibrous networks of Ni metal and oxygen-deficient Y2O3 are entangled with each other to form a rooted structure, i.e., Ni#Y2O3. We demonstrate that the rooted Ni#Y2O3 catalyst stably promotes the carbon-dioxide reforming of methane at 723 K for over 1000 h, where the performance of traditional supported catalysts such as Ni/Y2O3 diminishes within 100 h due to the precluded mass transport by accumulated carbon byproducts. In situ TEM demonstrates that the supported Ni nanoparticles are readily detached from the support surface in the reaction atmosphere, and migrate around to result in widespread accumulation of the carbon byproducts. The long-term stable methane reforming over the rooted catalyst is ultimately attributed to the topologically immobilized Ni catalysis centre and the synergistic function of the oxygen-deficient Y2O3 matrix, which successfully inhibits the accumulation of byproducts.
Collapse
Affiliation(s)
- Shusaku Shoji
- Department of Materials Science and Engineering , School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1, Ookayama, Meguro-ku , Tokyo , 152-8552 , Japan
| | - Xiaobo Peng
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-004 , Japan . ;
| | - Tsubasa Imai
- Graduate School of Science and Technology , Saitama University , 255 Shimo-Okubo , Saitama 338-8570 , Japan
| | | | - Kimitaka Higuchi
- Institute of Materials and Systems for Sustainability , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8601 , Japan
| | - Yuta Yamamoto
- Institute of Materials and Systems for Sustainability , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8601 , Japan
| | - Tomoharu Tokunaga
- Institute of Materials and Systems for Sustainability , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8601 , Japan
| | - Shigeo Arai
- Institute of Materials and Systems for Sustainability , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8601 , Japan
| | - Shigenori Ueda
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-004 , Japan . ; .,Synchrotron X-ray Station at SPring-8 , National Institute for Materials Science , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Ayako Hashimoto
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-004 , Japan . ; .,Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency (JST) , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Noritatsu Tsubaki
- Department of Applied Chemistry , School of Engineering , University of Toyama , 3190 Gofuku , Toyama 930-8555 , Japan
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering , School of Materials and Chemical Technology , Tokyo Institute of Technology , 2-12-1, Ookayama, Meguro-ku , Tokyo , 152-8552 , Japan
| | - Takeshi Fujita
- School of Environmental Science and Engineering , Kochi University of Technology , 185 Miyanokuchi, Tosayamada , Kami City , Kochi 782-8502 , Japan .
| | - Hideki Abe
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-004 , Japan . ; .,Graduate School of Science and Technology , Saitama University , 255 Shimo-Okubo , Saitama 338-8570 , Japan
| |
Collapse
|
20
|
Mousavi M, Nakhaei Pour A. Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method. NEW J CHEM 2019. [DOI: 10.1039/c9nj01805k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LaNiO3 and LaNi0.5Co0.5O3 as perovskites were synthesized in magnetized and non-magnetized water and the activity of the catalysts was evaluated in the methane dry reforming reaction with CO2.
Collapse
Affiliation(s)
- Maryam Mousavi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Ali Nakhaei Pour
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| |
Collapse
|
21
|
Fujita T, Peng X, Yamaguchi A, Cho Y, Zhang Y, Higuchi K, Yamamoto Y, Tokunaga T, Arai S, Miyauchi M, Abe H. Nanoporous Nickel Composite Catalyst for the Dry Reforming of Methane. ACS OMEGA 2018; 3:16651-16657. [PMID: 31458296 PMCID: PMC6643422 DOI: 10.1021/acsomega.8b02023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 06/10/2023]
Abstract
The development of efficient catalysts with high activities and durabilities for use in the dry reforming of methane (DRM) is desirable but challenging. We report the development of a nanoporous nickel composite (nanoporous Ni/Y2O3) via a facile one-step dealloying technique, for use in the DRM. Focusing on the low-temperature DRM, our composite possessed remarkable activity and durability against coking compared with conventional particle-based Ni catalysts. This was attributed to the aluminum oxides present on the Ni surface, which suppress pore coarsening. In addition, the inert bundled Y2O3 nanowires are suitable for use as substrates for nanoporous Ni.
Collapse
Affiliation(s)
- Takeshi Fujita
- School
of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Xiaobo Peng
- National
Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akira Yamaguchi
- School
of Materials and Chemical Technology, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yohei Cho
- School
of Materials and Chemical Technology, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yongzheng Zhang
- School
of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Kimitaka Higuchi
- Institute
of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuta Yamamoto
- Institute
of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoharu Tokunaga
- Institute
of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shigeo Arai
- Institute
of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masahiro Miyauchi
- School
of Materials and Chemical Technology, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hideki Abe
- National
Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
22
|
Li Z, Wang Z, Kawi S. Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming. ChemCatChem 2018. [DOI: 10.1002/cctc.201801266] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ziwei Li
- School of Chemical EngineeringGuizhou Institute of Technology 1 Caiguan Road Guiyang 550003 P.R. China
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhigang Wang
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585
| |
Collapse
|
23
|
Li G, Cheng H, Zhao H, Lu X, Xu Q, Wu C. Hydrogen production by CO2 reforming of CH4 in coke oven gas over Ni–Co/MgAl2O4 catalysts. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Design of Ni-ZrO2@SiO2 catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Li Z, Jiang B, Wang Z, Kawi S. High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.07.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Ashok J, Wai MH, Kawi S. Nickel-based Catalysts for High-temperature Water Gas Shift Reaction-Methane Suppression. ChemCatChem 2018. [DOI: 10.1002/cctc.201800031] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jangam Ashok
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Ming Hui Wai
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
27
|
Li Z, Sibudjing K. Facile Synthesis of Multi-Ni-Core@Ni Phyllosilicate@CeO2
Shell Hollow Spheres with High Oxygen Vacancy Concentration for Dry Reforming of CH4. ChemCatChem 2018. [DOI: 10.1002/cctc.201800335] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziwei Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering drive 4 Singapore 117585 Singapore
| | - Kawi Sibudjing
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering drive 4 Singapore 117585 Singapore
| |
Collapse
|
28
|
Pang Y, Zhong A, Xu Z, Jiang W, Gu L, Feng X, Ji W, Au CT. How do Core-Shell Structure Features Impact on the Activity/Stability of the Co-based Catalyst in Dry Reforming of Methane? ChemCatChem 2018. [DOI: 10.1002/cctc.201800327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yijun Pang
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Aihua Zhong
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zhijia Xu
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Wu Jiang
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Lingli Gu
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Xinzhen Feng
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Weijie Ji
- Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Chak-Tong Au
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong Hong Kong
| |
Collapse
|
29
|
Wang D, Astruc D. The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem Soc Rev 2018; 46:816-854. [PMID: 28101543 DOI: 10.1039/c6cs00629a] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.
Collapse
Affiliation(s)
- Dong Wang
- ISM, UMR CNRS 5255, Univ. Bordeaux, 33405 Talence Cedex, France.
| | - Didier Astruc
- ISM, UMR CNRS 5255, Univ. Bordeaux, 33405 Talence Cedex, France.
| |
Collapse
|
30
|
Yao L, Wang Y, Galvez ME, Hu C, Da Costa P. Ni–Mo 2 C supported on alumina as a substitute for Ni–Mo reduced catalysts supported on alumina material for dry reforming of methane. CR CHIM 2018. [DOI: 10.1016/j.crci.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Károlyi J, Németh M, Evangelisti C, Sáfrán G, Schay Z, Horváth A, Somodi F. Carbon dioxide reforming of methane over Ni–In/SiO2 catalyst without coke formation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Li Z, Das S, Hongmanorom P, Dewangan N, Wai MH, Kawi S. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00622a] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With wide availability, high thermal stability and high specific surface area, silica-based micro- and mesoporous materials show promising performance for dry reforming of methane reaction, boosting efficient and sustainable utilization of greenhouse gases.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Sonali Das
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Plaifa Hongmanorom
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Nikita Dewangan
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Ming Hui Wai
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
33
|
Ashok J, Bian Z, Wang Z, Kawi S. Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02475d] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, Ni–SiO2–MgO materials synthesized via Ni-phyllosilicate (PS) intermediates were explored for bi-reforming of methane (BRM) reaction.
Collapse
Affiliation(s)
- J. Ashok
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
- Republic of Singapore
| | - Z. Bian
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
- Republic of Singapore
| | - Z. Wang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
- Republic of Singapore
| | - S. Kawi
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
- Republic of Singapore
| |
Collapse
|
34
|
Li Z, Kawi S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00024g] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-Ni@Ni phyllosilicate hollow spheres synthesized with Ni(acac)2 precursor via hydrothermal and H2 reduction method have unique pore structure and strong interaction between Ni and Ni phyllosilicate which help prevent Ni sintering and carbon deposition, yielding excellent catalytic performance for CO2 reforming of CH4 reaction.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Singapore 117585
| |
Collapse
|
35
|
Li Z, Wang Z, Jiang B, Kawi S. Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00767e] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni nanoparticles are exclusively confined within the channels of SiO2 nanotubes (NTs) using the Ni phyllosilicate@SiO2 nanocomposite as a precursor where Ni phyllosilicate will in situ decompose into Ni nanoparticles within SiO2 shell NTs, exhibiting good sintering and carbon resistance for CO2 reforming of CH4 reaction.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- 117585 Singapore
| | - Zhigang Wang
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- 117585 Singapore
| | - Bo Jiang
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- 117585 Singapore
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- 117585 Singapore
| |
Collapse
|
36
|
Bian Z, Kawi S. Sandwich-Like Silica@Ni@Silica Multicore-Shell Catalyst for the Low-Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation. ChemCatChem 2017. [DOI: 10.1002/cctc.201701024] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhoufeng Bian
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore 117585 Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore 117585 Singapore
| |
Collapse
|
37
|
Synthesis of a Highly Active and Stable Nickel-Embedded Alumina Catalyst for Methane Dry Reforming: On the Confinement Effects of Alumina Shells for Nickel Nanoparticles. ChemCatChem 2017. [DOI: 10.1002/cctc.201700490] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Wang M, Boyjoo Y, Pan J, Wang S, Liu J. Advanced yolk-shell nanoparticles as nanoreactors for energy conversion. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62818-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Oemar U, Hidajat K, Kawi S. High catalytic stability of Pd-Ni/Y2O3 formed by interfacial Cl for oxy-CO2 reforming of CH4. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Zhao X, Cao Y, Li H, Zhang J, Shi L, Zhang D. Sc promoted and aerogel confined Ni catalysts for coking-resistant dry reforming of methane. RSC Adv 2017. [DOI: 10.1039/c6ra27266e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sc promoted and aerogel confined Ni catalysts were developed for coking-resistant dry reforming of methane.
Collapse
Affiliation(s)
- Xiaoyuan Zhao
- Research Center of Nano Science and Technology
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Yang Cao
- Research Center of Nano Science and Technology
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Hongrui Li
- Research Center of Nano Science and Technology
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Jianping Zhang
- Research Center of Nano Science and Technology
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Liyi Shi
- Research Center of Nano Science and Technology
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Dengsong Zhang
- Research Center of Nano Science and Technology
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
41
|
Zhao X, Lu M, Li H, Fang J, Shi L, Zhang D. In situ preparation of Ni nanoparticles in cerium-modified silica aerogels for coking- and sintering-resistant dry reforming of methane. NEW J CHEM 2017. [DOI: 10.1039/c7nj00115k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni nanoparticles in nanochannels of cerium-modified silica aerogels were in situ prepared for coking-resistant dry reforming of methane.
Collapse
Affiliation(s)
- Xiaoyuan Zhao
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Meirong Lu
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Hongrui Li
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Jianhui Fang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Liyi Shi
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Dengsong Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
42
|
Abstract
This review presents the recent remarkable developments of efficient Earth-abundant transition-metal nanocatalysts.
Collapse
Affiliation(s)
- Dong Wang
- ISM
- UMR CNRS 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| |
Collapse
|
43
|
Dong F, Zhu Y, Zhao H, Tang Z. Ratio-controlled synthesis of phyllosilicate-like materials as precursors for highly efficient catalysis of the formyl group. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00233e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and development of heterogeneous catalysts is very critical for the synthesis of various chemicals and fuels derived from superfluous biomass.
Collapse
Affiliation(s)
- Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- and National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Yulei Zhu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Haijun Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- and National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- and National Engineering Research Center for Fine Petrochemical Intermediates
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
| |
Collapse
|
44
|
Peng H, Zhang X, Zhang L, Rao C, Lian J, Liu W, Ying J, Zhang G, Wang Z, Zhang N, Wang X. One-Pot Facile Fabrication of Multiple Nickel Nanoparticles Confined in Microporous Silica Giving a Multiple-Cores@Shell Structure as a Highly Efficient Catalyst for Methane Dry Reforming. ChemCatChem 2016. [DOI: 10.1002/cctc.201601263] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Honggen Peng
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Xianhua Zhang
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| | - Li Zhang
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| | - Cheng Rao
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| | - Jie Lian
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| | - Wenming Liu
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| | - Jiawei Ying
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| | - Guohua Zhang
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| | - Zheng Wang
- State Key Laboratory Cultivation Base of Natural Gas Conversion; Ningxia University; Yinchuan 750021 P.R. China
| | - Ning Zhang
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| | - Xiang Wang
- Institute of Applied Chemistry, College of Chemistry; Nanchang University; Nanchang Jiangxi 330031 P.R. China
| |
Collapse
|
45
|
Li D, Li X, Gong J. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects. Chem Rev 2016; 116:11529-11653. [PMID: 27527927 DOI: 10.1021/acs.chemrev.6b00099] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This Review describes recent advances in the design, synthesis, reactivity, selectivity, structural, and electronic properties of the catalysts for reforming of a variety of oxygenates (e.g., from simple monoalcohols to higher polyols, then to sugars, phenols, and finally complicated mixtures like bio-oil). A comprehensive exploration of the structure-activity relationship in catalytic reforming of oxygenates is carried out, assisted by state-of-the-art characterization techniques and computational tools. Critical emphasis has been given on the mechanisms of these heterogeneous-catalyzed reactions and especially on the nature of the active catalytic sites and reaction pathways. Similarities and differences (reaction mechanisms, design and synthesis of catalysts, as well as catalytic systems) in the reforming process of these oxygenates will also be discussed. A critical overview is then provided regarding the challenges and opportunities for research in this area with a focus on the roles that systems of heterogeneous catalysis, reaction engineering, and materials science can play in the near future. This Review aims to present insights into the intrinsic mechanism involved in catalytic reforming and provides guidance to the development of novel catalysts and processes for the efficient utilization of oxygenates for energy and environmental purposes.
Collapse
Affiliation(s)
- Di Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Xinyu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| |
Collapse
|
46
|
WANG H, ZHANG JF, BAI YX, WANG WF, TAN YS, HAN YZ. NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1872-5813(16)30024-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Menezes PW, Indra A, Littlewood P, Göbel C, Schomäcker R, Driess M. A Single-Source Precursor Approach to Self-Supported Nickel-Manganese-Based Catalysts with Improved Stability for Effective Low-Temperature Dry Reforming of Methane. Chempluschem 2016; 81:370-377. [PMID: 31968753 DOI: 10.1002/cplu.201600064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/20/2022]
Abstract
Self-supported nickel-manganese-based catalysts were synthesized from heterobimetallic nickel manganese oxalate precursors via a versatile reverse micelle approach. The precursors were subjected to thermal degradation (400 °C) in the presence of synthetic air to form respective metal oxides, which were treated under hydrogen (500 °C) to form Ni2 MnO4 -O2 -H2 , Ni6 MnO8 -O2 -H2 and NiO-O2 -H2 . Similarly, the precursors were also treated directly under hydrogen at the same temperature to form Ni2 MnO4 -H2 and Ni6 MnO8 -H2 . The catalysts were extensively investigated by PXRD, SEM, TEM, XPS and BET analyses. The resulting catalysts were applied for dry reforming of methane (DRM) and exhibit better stability and resistance to coking than coprecipitated catalysts. Further, we show that addition of manganese, which is not an active catalyst for DRM alone, to nickel has a significant promotion effect on both the activity and stability of DRM catalysts, and a Ni/Mn ratio lower than 6:1 enables optimized activity for this system.
Collapse
Affiliation(s)
- Prashanth W Menezes
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Arindam Indra
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Patrick Littlewood
- Reaction Engineering, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC8, 10623, Berlin, Germany
| | - Caren Göbel
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Reinhard Schomäcker
- Reaction Engineering, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC8, 10623, Berlin, Germany
| | - Matthias Driess
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
48
|
Saw ET, Oemar U, Ang ML, Kus H, Kawi S. High-temperature water gas shift reaction on Ni–Cu/CeO2 catalysts: effect of ceria nanocrystal size on carboxylate formation. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01932j] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The WGS mechanism strongly depends on the Ni–Cu surface composition.
Collapse
Affiliation(s)
- Eng Toon Saw
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
| | - Usman Oemar
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
| | - Ming Li Ang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
| | - Hidajat Kus
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 119260
| |
Collapse
|
49
|
Purbia R, Paria S. Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. NANOSCALE 2015; 7:19789-873. [PMID: 26567966 DOI: 10.1039/c5nr04729c] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Core/shell nanoparticles were first reported in the early 1990s with a simple spherical core and shell structure, but the area is gradually diversifying in multiple directions such as different shapes, multishells, yolk/shell etc., because of the development of different new properties of the materials, which are useful for several advanced applications. Among different sub-areas of core/shell nanoparticles, yolk/shell nanoparticles (YS NPs) have drawn significant attention in recent years because of their unique properties such as low density, large surface area, ease of interior core functionalization, a good molecular loading capacity in the void space, tunable interstitial void space, and a hollow outer shell. The YS NPs have better properties over simple core/shell or hollow NPs in various fields including biomedical, catalysis, sensors, lithium batteries, adsorbents, DSSCs, microwave absorbers etc., mainly because of the presence of free void space, porous hollow shell, and free core surface. This review presents an extensive classification of YS NPs based on their structures and types of materials, along with synthesis strategies, properties, and applications with which one would be able to draw a complete picture of this area.
Collapse
Affiliation(s)
- Rahul Purbia
- Interfaces and Nanomaterials Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, India.
| | | |
Collapse
|
50
|
Kawi S, Kathiraser Y, Ni J, Oemar U, Li Z, Saw ET. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. CHEMSUSCHEM 2015; 8:3556-75. [PMID: 26440576 DOI: 10.1002/cssc.201500390] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 05/26/2023]
Abstract
In recent decades, rising anthropogenic greenhouse gas emissions (mainly CO2 and CH4 ) have increased alarm due to escalating effects of global warming. The dry carbon dioxide reforming of methane (DRM) reaction is a sustainable way to utilize these notorious greenhouse gases. This paper presents a review of recent progress in the development of nickel-based catalysts for the DRM reaction. The enviable low cost and wide availability of nickel compared with noble metals is the main reason for persistent research efforts in optimizing the synthesis of nickel-based catalysts. Important catalyst features for the rational design of a coke-resistant nickel-based nanocatalyst for the DRM reaction are also discussed. In addition, several innovative developments based on salient features for the stabilization of nickel nanocatalysts through various means (which include functionalization with precursors, synthesis by plasma treatment, stabilization/confinement on mesoporous/microporous/carbon supports, and the formation of metal oxides) are highlighted. The final part of this review covers major issues and proposed improvement strategies pertaining to the rational design of nickel-based catalysts with high activity and stability for the DRM reaction.
Collapse
Affiliation(s)
- Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yasotha Kathiraser
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jun Ni
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Usman Oemar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ziwei Li
- School of Chemical Engineering, Guizhou Institute of Technology, 1 Caiguan Road, Yunyan District, 550003, Guiyang, P.R. China
| | - Eng Toon Saw
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|