1
|
Bin Yousaf A, Kveton F, Blsakova A, Popelka A, Tkac J, Kasak P. Electrochemical surface activation of commercial tungsten carbide for enhanced electrocatalytic hydrogen evolution and methanol oxidation reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Wang S, Mao Q, Ren H, Wang W, Wang Z, Xu Y, Li X, Wang L, Wang H. Liquid Metal Interfacial Growth and Exfoliation to Form Mesoporous Metallic Nanosheets for Alkaline Methanol Electroreforming. ACS NANO 2022; 16:2978-2987. [PMID: 35061352 DOI: 10.1021/acsnano.1c10262] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials have spurred great interest in the field of catalysis due to their fascinating electronic and thermal transport properties. However, adding uniform mesopores to 2D metallic materials has remained a great challenge owing to the inherent high surface energy. Here, we introduce a generic liquid metal interfacial growth and exfoliation strategy to synthesize a library of penetrating mesoporous metallic nanosheets. The formation of liquid-metal/water interface promotes the adsorption of metal ion-encapsulated copolymer micelles, induces the self-limiting galvanic replacement reaction, and enables the exfoliation of products under mechanical agitation. These 2D mesoporous metallic nanosheets with large lateral size, narrow thickness distribution, and uniform perforated structure provide facilitated channels and abundant active sites for catalysis. Typically, the generated mesoporous PtRh nanosheets (mPtRh NSs) exhibit superior electroactivity and durability in hydrogen evolution reaction as well as methanol electrooxidation in alkaline media. Moreover, the constructed symmetric mPtRh NSs cell requires only a relative low electrolysis voltage to achieve methanol-assisted hydrogen production compared with traditional overall water electrolysis. The work reveals a specific growth pattern of noble metals at the liquid-metal/water interface and thus introduces a versatile strategy to form 2D penetrating mesoporous metallic nanomaterials with extensive high-performance applications.
Collapse
Affiliation(s)
- Shengqi Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| | - Hang Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| | - Wenxin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang road, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
3
|
Tian D, Denny SR, Li K, Wang H, Kattel S, Chen JG. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem Soc Rev 2021; 50:12338-12376. [PMID: 34580693 DOI: 10.1039/d1cs00590a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal carbides and nitrides are interesting non-precious materials that have been shown to replace or reduce the loading of precious metals for catalyzing several important electrochemical reactions. The purpose of this review is to summarize density functional theory (DFT) studies, describe reaction pathways, identify activity and selectivity descriptors, and present a future outlook in designing carbide and nitride catalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), nitrogen reduction reaction (N2RR), CO2 reduction reaction (CO2RR) and alcohol oxidation reactions. This topic is of high interest to scientific communities working in the field of electrocatalysis and this review should provide theoretical guidance for the rational design of improved carbide and nitride electrocatalysts.
Collapse
Affiliation(s)
- Dong Tian
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China. .,Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA. .,Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Steven R Denny
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China.
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China.
| | - Shyam Kattel
- Department of Physics, Florida A&M University, Tallahassee, FL, 32307, USA.
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA. .,Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
4
|
Wang QY, Wang CY, Tong YC, Xu XJ, Bai QL, Li SB. The catalytic activity of Pt nCu m (n = 1-3, m = 0-2) clusters for methanol dehydrogenation to CO. J Mol Model 2021; 27:215. [PMID: 34196847 DOI: 10.1007/s00894-021-04836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
A large number of experiments show that PtCu catalyst has a good catalytic effect on methanol decomposition. Therefore, density functional theory (DFT) was used to further study the dehydrogenation of methanol catalyzed by PtnCum (n = 1-3, m = 0-2). The energy diagrams of O-adsorption path and H-adsorption path were drawn. By calculation, the Pt is the active site of the whole reaction process, and the barrier energy of the rate-determining step is 11.09 kcal mol-1 by Pt2Cu, which is lower than that of Pt3 and PtCu2. However, the complete dehydrogenation product of methanol, CO, is easier to dissociate from PtCu2 clusters than from Pt3 and Pt2Cu clusters. Therefore, Cu doping can improve the catalytic activity and anti-CO toxicity of Pt to a certain extent.
Collapse
Affiliation(s)
- Qing-Yun Wang
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China.
| | - Chun-Yan Wang
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| | - Yong-Chun Tong
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| | - Xin-Jian Xu
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| | - Qing-Ling Bai
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| | - Shou-Bo Li
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| |
Collapse
|
5
|
Baruah B, Kumar A, Umapathy G, Ojha S. Enhanced electrocatalytic activity of ion implanted rGO/PEDOT:PSS hybrid nanocomposites towards methanol electro-oxidation in direct methanol fuel cells. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Baruah B, Kumar A. Electrocatalytic Acitivity of rGO/PEDOT : PSS Nanocomposite towards Methanol Oxidation in Alkaline Media. ELECTROANAL 2018. [DOI: 10.1002/elan.201800086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bhagyalakhi Baruah
- Materials Research Laboratory, Department of Physics; Tezpur University; Tezpur 784028, Assam India
| | - Ashok Kumar
- Materials Research Laboratory, Department of Physics; Tezpur University; Tezpur 784028, Assam India
| |
Collapse
|
7
|
Wan W, Tackett BM, Chen JG. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces. Chem Soc Rev 2018; 46:1807-1823. [PMID: 28229154 DOI: 10.1039/c6cs00862c] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The formation of carbides can significantly modify the physical and chemical properties of the parent metals. In the current review, we summarize the general trends in the reactions of water and C1 molecules over transition metal carbide (TMC) and metal-modified TMC surfaces and thin films. Although the primary focus of the current review is on the theoretical and experimental studies of reactions of C1 molecules (CO, CO2, CH3OH, etc.), the reactions of water will also be reviewed because water plays an important role in many of the C1 transformation reactions. This review is organized by discussing separately thermal reactions and electrochemical reactions, which provides insights into the application of TMCs in heterogeneous catalysis and electrocatalysis, respectively. In thermal reactions, we discuss the thermal decomposition of water and methanol, as well as the reactions of CO and CO2 over TMC surfaces. In electrochemical reactions, we summarize recent studies in the hydrogen evolution reaction, electrooxidation of methanol and CO, and electroreduction of CO2. Finally, future research opportunities and challenges associated with using TMCs as catalysts and electrocatalysts are also discussed.
Collapse
Affiliation(s)
- Weiming Wan
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Brian M Tackett
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA. and Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
8
|
Wang QY, Ding YH. Methanol Oxidation on Platinum Catalyst: Why does the Negatively Charged Surface Perform Better Than the Neutral One? ChemistrySelect 2017. [DOI: 10.1002/slct.201601491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing-Yun Wang
- Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun 130023 People's Republic of China
- College of Chemistry and Chemical Engineering; Hexi University; Zhangye Gansu 734000 People's Republic China
| | - Yi-Hong Ding
- Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun 130023 People's Republic of China
| |
Collapse
|