1
|
Liu JC, Luo L, Xiao H, Zhu J, He Y, Li J. Metal Affinity of Support Dictates Sintering of Gold Catalysts. J Am Chem Soc 2022; 144:20601-20609. [DOI: 10.1021/jacs.2c06785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin-Cheng Liu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hai Xiao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology China, Hefei, Anhui 230029, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Deep learning detection of nanoparticles and multiple object tracking of their dynamic evolution during in situ ETEM studies. Sci Rep 2022; 12:2484. [PMID: 35169206 PMCID: PMC8847623 DOI: 10.1038/s41598-022-06308-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
In situ transmission electron microscopy (TEM) studies of dynamic events produce large quantities of data especially under the form of images. In the important case of heterogeneous catalysis, environmental TEM (ETEM) under gas and temperature allows to follow a large population of supported nanoparticles (NPs) evolving under reactive conditions. Interpreting properly large image sequences gives precious information on the catalytic properties of the active phase by identifying causes for its deactivation. To perform a quantitative, objective and robust treatment, we propose an automatic procedure to track nanoparticles observed in Scanning ETEM (STEM in ETEM). Our approach involves deep learning and computer vision developments in multiple object tracking. At first, a registration step corrects the image displacements and misalignment inherent to the in situ acquisition. Then, a deep learning approach detects the nanoparticles on all frames of video sequences. Finally, an iterative tracking algorithm reconstructs their trajectories. This treatment allows to deduce quantitative and statistical features about their evolution or motion, such as a Brownian behavior and merging or crossing events. We treat the case of in situ calcination of palladium (oxide) / delta-alumina, where the present approach allows a discussion of operating processes such as Ostwald ripening or NP aggregative coalescence.
Collapse
|
3
|
Sharna S, Bahri M, Bouillet C, Rouchon V, Lambert A, Gay AS, Chiche D, Ersen O. In situ STEM study on the morphological evolution of copper-based nanoparticles during high-temperature redox reactions. NANOSCALE 2021; 13:9747-9756. [PMID: 34019612 DOI: 10.1039/d1nr01648b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite the broad relevance of copper nanoparticles in industrial applications, the fundamental understanding of oxidation and reduction of copper at the nanoscale is still a matter of debate and remains within the realm of bulk or thin film-based systems. Moreover, the reported studies on nanoparticles vary widely in terms of experimental parameters and are predominantly carried out using either ex situ observation or environmental transmission electron microscopy in a gaseous atmosphere at low pressure. Hence, dedicated studies in regards to the morphological transformations and structural transitions of copper-based nanoparticles at a wider range of temperatures and under industrially relevant pressure would provide valuable insights to improve the application-specific material design. In this paper, copper nanoparticles are studied using in situ Scanning Transmission Electron Microscopy to discern the transformation of the nanoparticles induced by oxidative and reductive environments at high temperatures. The nanoparticles were subjected to a temperature of 150 °C to 900 °C at 0.5 atm partial pressure of the reactive gas, which resulted in different modes of copper mobility both within the individual nanoparticles and on the surface of the support. Oxidation at an incremental temperature revealed the dependency of the nanoparticles' morphological evolution on their initial size as well as reaction temperature. After the formation of an initial thin layer of oxide, the nanoparticles evolved to form hollow oxide shells. The kinetics of formation of hollow particles were simulated using a reaction-diffusion model to determine the activation energy of diffusion and temperature-dependent diffusion coefficient of copper in copper oxide. Upon further temperature increase, the hollow shell collapsed to form compact and facetted nanoparticles. Reduction of copper oxide was carried out at different temperatures starting from various oxide phase morphologies. A reduction mechanism is proposed based on the dynamic of the reduction-induced fragmentation of the oxide phase. In a broader perspective, this study offers insights into the mobility of the copper phase during its oxidation-reduction process in terms of microstructural evolution as a function of nanoparticle size, reaction gas, and temperature.
Collapse
Affiliation(s)
- Sharmin Sharna
- IFP Energies Nouvelles, Rond-Point de l'échangeur de Solaize, 69360 Solaize, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Martin TE, Mitchell RW, Boyes ED, Gai PL. Atom-by-atom analysis of sintering dynamics and stability of Pt nanoparticle catalysts in chemical reactions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190597. [PMID: 33100157 PMCID: PMC7661282 DOI: 10.1098/rsta.2019.0597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Supported Pt nanoparticles are used extensively in chemical processes, including for fuel cells, fuels, pollution control and hydrogenation reactions. Atomic-level deactivation mechanisms play a critical role in the loss of performance. In this original research paper, we introduce real-time in-situ visualization and quantitative analysis of dynamic atom-by-atom sintering and stability of model Pt nanoparticles on a carbon support, under controlled chemical reaction conditions of temperature and continuously flowing gas. We use a novel environmental scanning transmission electron microscope with single-atom resolution, to understand the mechanisms. Our results track the areal density of dynamic single atoms on the support between nanoparticles and attached to them; both as migrating species in performance degradation and as potential new independent active species. We demonstrate that the decay of smaller nanoparticles is initiated by a local lack of single atoms; while a post decay increase in single-atom density suggests anchoring sites on the substrate before aggregation to larger particles. The analyses reveal a relationship between the density and mobility of single atoms, particle sizes and their nature in the immediate neighbourhood. The results are combined with practical catalysts important in technological processes. The findings illustrate the complex nature of sintering and deactivation. They are used to generate new fundamental insights into nanoparticle sintering dynamics at the single-atom level, important in the development of efficient supported nanoparticle systems for improved chemical processes and novel single-atom catalysis. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Thomas E. Martin
- Department of Physics, University of York, York YO10 5DD, UK
- York Nanocentre, University of York, York YO10 5DD, UK
| | - Robert W. Mitchell
- Department of Physics, University of York, York YO10 5DD, UK
- York Nanocentre, University of York, York YO10 5DD, UK
| | - Edward D. Boyes
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
- York Nanocentre, University of York, York YO10 5DD, UK
| | - Pratibha L. Gai
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Chemistry, University of York, York YO10 5DD, UK
- York Nanocentre, University of York, York YO10 5DD, UK
| |
Collapse
|
5
|
Boyes ED, LaGrow AP, Ward MR, Martin TE, Gai PL. Visualizing single atom dynamics in heterogeneous catalysis using analytical in situ environmental scanning transmission electron microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190605. [PMID: 33100164 PMCID: PMC7661277 DOI: 10.1098/rsta.2019.0605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Progress is reported in analytical in situ environmental scanning transmission electron microscopy (ESTEM) for visualizing and analysing in real-time dynamic gas-solid catalyst reactions at the single-atom level under controlled reaction conditions of gas environment and temperature. The recent development of the ESTEM advances the capability of the established ETEM with the detection of fundamental single atoms, and the associated atomic structure of selected solid-state heterogeneous catalysts, in catalytic reactions in their working state. The new data provide improved understanding of dynamic atomic processes and reaction mechanisms, in activity and deactivation, at the fundamental level; and in the chemistry underpinning important technological processes. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes, reductions in energy requirements and better management of environmental waste. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Edward D. Boyes
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
- e-mail:
| | - Alec P. LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Michael R. Ward
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
| | - Thomas E. Martin
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
| | - Pratibha L. Gai
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Chemistry, University of York, York YO10 5DD, UK
- e-mail:
| |
Collapse
|
6
|
Abstract
Many heterogeneous chemical reactions involve gases catalyzed over solid surfaces at elevated temperatures and play a critical role in the production of energy, healthcare, pollution control, industrial products, and food. These catalytic reactions take place at the atomic level, with active structures forming under reaction conditions. A fundamental understanding of catalysis at the single atom resolution is therefore a major advance in a rational framework upon which future catalytic processes can be built. Visualization and analysis of gas-catalyst chemical reactions at the atomic level under controlled reaction conditions are key to understanding the catalyst structural evolution and atomic scale reaction mechanisms crucial to the performance and the development of improved catalysts and chemical processes. Increasingly, dynamic single atoms and atom clusters are believed to lead to enhanced catalyst performance, but despite considerable efforts, reaction mechanisms at the single atom level under reaction conditions of gas and temperature are not well understood. The development of the atomic lattice resolution environmental transmission electron microscope (ETEM) by the authors is widely used to visualize gas-solid catalyst reactions at this atomic level. It has recently been advanced to the environmental scanning TEM (ESTEM) with single atom resolution and full analytical capabilities. The ESTEM employs high-angle annular dark-field imaging where intensity is approximately proportional to the square of the atomic number (Z). In this Account, we highlight the ESTEM development also introduced by the authors for real time in situ studies to reliably discern metal atoms on lighter supports in gas and high temperature environments, evolving oxide/metal interfaces, and atomic level reaction mechanisms in heterogeneous catalysts more generally and informatively, with utilizing the wider body of literature. The highlights include platinum/carbon systems of interest in fuel cells to meet energy demands and reduce environmental pollution, in reduction/oxidation (redox) mechanisms of copper and nickel nanoparticles extensively employed in catalysis, electronics, and sensors, and in the activation of supported cobalt catalysts in Fischer-Tropsch (FT) synthesis to produce fuels. By following the dynamic reduction process at operating temperature, we investigate Pt atom migrations from irregular nanoparticles in a carbon supported platinum catalyst and the resulting faceting. We outline the factors that govern the mechanism involved, with the discovery of single atom interactions which indicate that a primary role of the nanoparticles is to act as reservoirs of low coordination atoms and clusters. This has important implications in supported nanoparticle catalysis and nanoparticle science. In copper and nickel systems, we track the oxidation front at the atomic level as it proceeds across a nanoparticle, by directly monitoring Z-contrast changes with time and temperature. Regeneration of deactivated catalysts is key to prolong catalyst life. We discuss and review analyses of dynamic redox cycles for the redispersion of nickel nanoparticles with single atom resolution. In the FT process, pretreatment of practical cobalt/silica catalysts reveals higher low-coordination Co0 active sites for CO adsorption. Collectively, the ESTEM findings generate structural insights into catalyst dynamics important in the development of efficient catalysts and processes.
Collapse
|
7
|
Yuan W, Zhang D, Ou Y, Fang K, Zhu B, Yang H, Hansen TW, Wagner JB, Zhang Z, Gao Y, Wang Y. Direct In Situ TEM Visualization and Insight into the Facet‐Dependent Sintering Behaviors of Gold on TiO
2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Dawei Zhang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Yang Ou
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Ke Fang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Thomas W. Hansen
- Center for Electron NanoscopyTechnical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Jakob B. Wagner
- Center for Electron NanoscopyTechnical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Ze Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
8
|
Yuan W, Zhang D, Ou Y, Fang K, Zhu B, Yang H, Hansen TW, Wagner JB, Zhang Z, Gao Y, Wang Y. Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO 2. Angew Chem Int Ed Engl 2018; 57:16827-16831. [PMID: 30397982 DOI: 10.1002/anie.201811933] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 11/09/2022]
Abstract
Preventing sintering of supported nanocatalysts is an important issue in nanocatalysis. A feasible way is to choose a suitable support. However, whether the metal-support interactions promote or prevent the sintering has not been fully identified. Now, completely different sintering behaviors of Au nanoparticles on distinct anatase TiO2 surfaces have been determined by in situ TEM. The full in situ sintering processes of Au nanoparticles were visualized on TiO2 (101) surface, which coupled the Ostwald ripening and particle migration coalescence. In contrast, no sintering of Au on TiO2 anatase (001) surface was observed under the same conditions. This facet-dependent sintering mechanism is fully explained by the density function theory calculations. This work not only offers direct evidence of the important role of supports in the sintering process, but also provides insightful information for the design of sintering-resistant nanocatalysts.
Collapse
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dawei Zhang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yang Ou
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ke Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Thomas W Hansen
- Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Jakob B Wagner
- Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Affiliation(s)
- Elisa Jimenez-Izal
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), 20080 Donostia, Euskadi, Spain
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- California NanoSystems Institute, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Shi W, Li J, Polsen ES, Oliver CR, Zhao Y, Meshot ER, Barclay M, Fairbrother DH, Hart AJ, Plata DL. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. NANOSCALE 2017; 9:5222-5233. [PMID: 28397885 DOI: 10.1039/c6nr09802a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O2, and this effect was mitigated by high H2 concentrations and not due to water vapor (as confirmed in O2-free water addition experiments), supporting the importance of O2 specifically. Further characterization of the interface between the Fe catalyst and Al2O3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O2 and H2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.
Collapse
Affiliation(s)
- Wenbo Shi
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
LaGrow AP, Ward MR, Lloyd DC, Gai PL, Boyes ED. Visualizing the Cu/Cu2O Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy. J Am Chem Soc 2016; 139:179-185. [DOI: 10.1021/jacs.6b08842] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Alec P. LaGrow
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| | - Michael R. Ward
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| | - David C. Lloyd
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| | - Pratibha L. Gai
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| | - Edward D. Boyes
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| |
Collapse
|
12
|
Patra SG, Shee NK, Drew MGB, Datta D. Angle isomerism, as exemplified in a five-coordinate, dimeric copper(ii) Schiff base complex. Observation of Ostwald ripening. NEW J CHEM 2016. [DOI: 10.1039/c5nj02765a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All bonding parameters in the X-ray structures of two forms of a Cu(ii) complex are found to be the same except for two angles. Correspondingly, two separate minima are located in DFT calculations.
Collapse
Affiliation(s)
- Shanti G. Patra
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Calcutta 700 032
- India
| | - Nirmal K. Shee
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Calcutta 700 032
- India
| | | | - Dipankar Datta
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Calcutta 700 032
- India
| |
Collapse
|