1
|
Nimbalkar AS, Oh KR, Han SJ, Yun GN, Cha SH, Upare PP, Awad A, Hwang DW, Hwang YK. Nickel-Tin Nanoalloy Supported ZnO Catalysts from Mixed-Metal Zeolitic Imidazolate Frameworks for Selective Conversion of Glycerol to 1,2-Propanediol. CHEMSUSCHEM 2024; 17:e202301315. [PMID: 37932870 DOI: 10.1002/cssc.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
The successful synthesis of finely tuned Ni1.5 Sn nanoalloy phases containing ZnO catalyst with a small particle size (6.7 nm) from a mixed-metal zeolitic imidazolate framework (MM-ZIF) is investigated. The catalyst was evaluated for the efficient production of 1,2-propanediol (1,2-PDO) from crude glycerol and comprehensively characterized using several analytical techniques. Among the catalysts, 3Ni1Sn/ZnO (Ni/Sn=3/1) showed the best catalytic performance and produced the highest yield (94.2 %) of 1,2-PDO at ~100 % conversion of glycerol; it also showed low apparent activation energy (15.4 kJ/mol) and excellent stability. The results demonstrated that the synergy between Ni-Sn alloy, finely dispersed Ni metallic sites, and the Lewis acidity of SnOx species-loaded ZnO played a pivotal role in the high activity and selectivity of the catalyst. The confirmation of acetol intermediate and theoretical calculations verify the Ni1.5 Sn phases provide the least energetic pathway for the formation of 1,2-PDO selectively. The reusability of solvent for successive ZIF synthesis, along with the excellent recyclability of the ZIF-derived catalyst, enables an overall sustainable process. We believe that the present synthetic protocol that uses MM-ZIF for the conversion of various biomass-derived platform chemicals into valuable products can be applied to various nanoalloy preparations.
Collapse
Affiliation(s)
- Ajaysing S Nimbalkar
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Kyung-Ryul Oh
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, United States
| | - Seung Ju Han
- C1 Gas and Carbon Convergent Research Center, Korea Research Institute for Chemical Technology, Dajeon, 34114, South Korea
| | - Gwang-Nam Yun
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Seung Hyeok Cha
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | | | - Ali Awad
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Dong Won Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Young Kyu Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| |
Collapse
|
2
|
Gatti MN, Perez FM, Santori GF, Nichio NN, Pompeo F. Heterogeneous Catalysts for Glycerol Biorefineries: Hydrogenolysis to 1,2-Propylene Glycol. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093551. [PMID: 37176434 PMCID: PMC10180530 DOI: 10.3390/ma16093551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Research on the use of biomass resources for the generation of energy and chemical compounds is of great interest worldwide. The development and growth of the biodiesel industry has led to a parallel market for the supply of glycerol, its main by-product. Its wide availability and relatively low cost as a raw material make glycerol a basic component for obtaining various chemical products and allows for the development of a biorefinery around biodiesel plants, through the technological integration of different production processes. This work proposes a review of one of the reactions of interest in the biorefinery environment: the hydrogenolysis of glycerol to 1,2-propylene glycol. The article reviews more than 300 references, covering literature from about 20 years, focusing on the heterogeneous catalysts used for the production of glycol. In this sense, from about 175 catalysts, between bulk and supported ones, were revised and discussed critically, based on noble metals, such as Ru, Pt, Pd, and non-noble metals as Cu, Ni, Co, both in liquid (2-10 MPa, 120-260 °C) and vapor phase (0.1 MPa, 200-300 °C). Then, the effect of the main operational and decision variables, such as temperature, pressure, catalyst/glycerol mass ratio, space velocity, and H2 flow, are discussed, depending on the reactors employed. Finally, the formulation of several kinetic models and stability studies are presented, discussing the main deactivation mechanisms of the catalytic systems such as coking, leaching, and sintering, and the presence of impurities in the glycerol feed. It is expected that this work will serve as a tool for the development of more efficient catalytic materials and processes towards the future projection of glycerol biorefineries.
Collapse
Affiliation(s)
- Martín N Gatti
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Federico M Perez
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Gerardo F Santori
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Nora N Nichio
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| | - Francisco Pompeo
- Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET, Calle 47, 257, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Calle 1 esq. 47, La Plata 1900, Argentina
| |
Collapse
|
3
|
Almutairi HH, Parveen N, Ansari SA. Hydrothermal Synthesis of Multifunctional Bimetallic Ag-CuO Nanohybrids and Their Antimicrobial, Antibiofilm and Antiproliferative Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4167. [PMID: 36500789 PMCID: PMC9737815 DOI: 10.3390/nano12234167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The rapidly growing global problem of infectious pathogens acquiring resistance to conventional antibiotics is an instigating reason for researchers to continue the search for functional as well as broad-spectrum antimicrobials. Hence, we aimed in this study to synthesis silver-copper oxide (Ag-CuO) nanohybrids as a function of Ag concentration (0.05, 0.1, 0.3 and 0.5 g) via the one-step hydrothermal method. The bimetallic Ag-CuO nanohybrids Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 were characterized for their physico-chemical properties. The SEM results showed pleomorphic Ag-CuO crystals; however, the majority of the particles were found in spherical shape. TEM results showed that the Ag-CuO nanohybrids in formulations Ag-C-1 and Ag-C-3 were in the size range of 20-35 nm. Strong signals of Ag, Cu and O in the EDX spectra revealed that the as-synthesized nanostructures are bimetallic Ag-CuO nanohybrids. The obtained Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 nanohybrids have shown their MICs and MBCs against E. coli and C. albicans in the range of 4-12 mg/mL and 2-24 mg/mL, respectively. Furthermore, dose-dependent toxicity and apoptosis process stimulation in the cultured human colon cancer HCT-116 cells have proven the Ag-CuO nanohybrids as promising antiproliferative agents against mammalian cancer.
Collapse
Affiliation(s)
- Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia
| | - Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, Al Ahsa, P.O. Box 400, Hofuf 31982, Saudi Arabia
| |
Collapse
|
4
|
Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals. Catalysts 2022. [DOI: 10.3390/catal12070767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes in recent decades (as a result of biodiesel production as a byproduct) as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors and other useful chemicals, etc. Biodiesel has presented another challenge in the considerable increase in its byproduct (glycerol). This review provides a recent update on the transformation of glycerol with an exclusive focus on the various catalysts’ performance in designing reaction operation conditions. The different products observed and cataloged in this review involved hydrogen, acetol, acrolein, ethylene glycol, and propylene glycol (1,3-propanediol and 1,2-propanediol) from reforming and dehydration and hydrogenolysis reactions of glycerol conversions. The future prospects and critical challenges are finally presented.
Collapse
|
5
|
Sun Z, Zhang ZH, Yuan TQ, Ren X, Rong Z. Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02433] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Zhe-Hui Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Xiaohong Ren
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People’s Republic of China
| | - Zeming Rong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People’s Republic of China
| |
Collapse
|
6
|
Kumar P, Shah AK, Lee JH, Park YH, Štangar UL. Selective Hydrogenolysis of Glycerol over Bifunctional Copper–Magnesium-Supported Catalysts for Propanediol Synthesis. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Praveen Kumar
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Kyunggido 15588, Republic of Korea
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Abdul Karim Shah
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Kyunggido 15588, Republic of Korea
- Department of Chemical Engineering, Dawood University of Engineering and Technology, 74800 Karachi, Pakistan
| | - Jung-Ho Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Kyunggido 15588, Republic of Korea
| | - Yeung Ho Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Kyunggido 15588, Republic of Korea
| | - Urška Lavrenčič Štangar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Wang X, Beine AK, Hausoul PJC, Palkovits R. Cu/C‐catalyzed Hydrogenolysis of Sorbitol to Glycols–On the Influence of Particle Size and Base. ChemCatChem 2019. [DOI: 10.1002/cctc.201900299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinde Wang
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Anna Katharina Beine
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Peter J. C. Hausoul
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
8
|
Liao G, Fang J, Li Q, Li S, Xu Z, Fang B. Ag-Based nanocomposites: synthesis and applications in catalysis. NANOSCALE 2019; 11:7062-7096. [PMID: 30931457 DOI: 10.1039/c9nr01408j] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ag-Based nanocomposites, including supported Ag nanocomposites and bimetallic Ag nanocomposites, have been intensively investigated as highly efficient catalysts because of their high activity and stability, easy preparation, low cost, and low toxicity. Herein, we systematically summarize and comprehensively evaluate versatile synthetic strategies for the preparation of Ag-based nanocomposites, and outline their recent advances in catalytic oxidation, catalytic reduction, photocatalysis and electrocatalysis. In addition, the challenges and prospects related to Ag-based nanocomposites for various catalytic applications are also discussed. In light of the most recent advances in Ag-based nanocomposites for catalysis applications, this review provides a comprehensive assessment on the material selection, synthesis and catalytic characteristics of these catalysts, which offers a strategic guide to build a close connection between Ag nanocomposites and catalysis applications.
Collapse
Affiliation(s)
- Guangfu Liao
- School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong 523808, China.
| | | | | | | | | | | |
Collapse
|
9
|
Jin X, Fang T, Wang J, Liu M, Pan S, Subramaniam B, Shen J, Yang C, Chaudhari RV. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. CHEM REC 2018; 19:1952-1994. [PMID: 30474917 DOI: 10.1002/tcr.201800144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Indexed: 11/12/2022]
Abstract
Conversion of biomass to chemicals provides essential products to human society from renewable resources. In this context, achieving atom-economical and energy-efficient conversion with high selectivity towards target products remains a key challenge. Recent developments in nanostructured catalysts address this challenge reporting remarkable performances in shape and morphology dependent catalysis by metals on nano scale in energy and environmental applications. In this review, most recent advances in synthesis of heterogeneous nanomaterials, surface characterization and catalytic performances for hydrogenation and oxidation for biorenewables with plausible mechanism have been discussed. The perspectives obtained from this review paper will provide insights into rational design of active, selective and stable catalytic materials for sustainable production of value-added chemicals from biomass resources.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Siyuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Raghunath V Chaudhari
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| |
Collapse
|
10
|
Zhou CH, Deng K, Serio MD, Xiao S, Tong DS, Li L, Lin CX, Beltramini J, Zhang H, Yu WH. Cleaner hydrothermal hydrogenolysis of glycerol to 1,2-propanediol over Cu/oxide catalysts without addition of external hydrogen. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|