1
|
Zou JF, Li S, Liu P, Zhao Y, Wang T, Pan YX, Yan X. Strategy in Promoting Visible Light Absorption, Charge Separation, CO 2 Adsorption and Proton Production for Efficient Photocatalytic CO 2 Reduction with H 2O. Chem Asian J 2024:e202400781. [PMID: 39418204 DOI: 10.1002/asia.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Solar-energy-driven photocatalytic CO2 reduction by H2O to high-valuable carbon-containing chemicals has become one of the greatest concerns in both scientific and industrial communities, due to its potential in solving energy and environmental problems. However, efficiency of photocatalytic CO2 reduction by H2O is still far below the needs of large-scale applications. The reduction efficiency is closely related to ability of photocatalysts in absorbing visible light which is the main part of sunlight (44 %), separating photogenerated electron-hole pairs, adsorbing CO2 and producing protons for reducing CO2. Thus, photocatalysts with enhanced visible light absorption, electron-hole separation, CO2 adsorption and proton production are highly desired. Herein, we aim to provide a picture of recent progresses in improving ability of photocatalysts in visible light absorption, electron-hole separation, CO2 adsorption and proton production, and give an outlook for future researches associated with photocatalytic CO2 reduction by H2O.
Collapse
Affiliation(s)
- Jia-Fu Zou
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Sha Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yiyi Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tingwei Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yun-Xiang Pan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaoliang Yan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| |
Collapse
|
2
|
Marks M, Jeppesen H, Nielsen MLN, Kong J, Ceccato M, van der Veen MA, Bøjesen ED, Lock N. Elucidating Structural Disorder in Ultra-Thin Bi-Rich Bismuth Oxyhalide Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401413. [PMID: 38733238 DOI: 10.1002/smll.202401413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Advancing the field of photocatalysis requires the elucidation of structural properties that underpin the photocatalytic properties of promising materials. The focus of the present study is layered, Bi-rich bismuth oxyhalides, which are widely studied for photocatalytic applications yet poorly structurally understood, due to high levels of disorder, nano-sized domains, and the large number of structurally similar compounds. By connecting insights from multiple scattering techniques, utilizing electron-, X-ray- and neutron probes, the crystal phase of the synthesized materials is allocated as layered Bi24O31X10 (X = Cl, Br), albeit with significant deviation from the reported 3D crystalline model. The materials comprise anisotropic platelet-shaped crystalline domains, exhibiting significant in-plane ordering in two dimensions but disorder and an ultra-thin morphology in the layer stacking direction. Increased synthesis pH tailored larger, more ordered crystalline domains, leading to longer excited state lifetimes determined via femtosecond transient absorption spectroscopy (fs-TAS). Although this likely contributes to improved photocatalytic properties, assessed via the photooxidation of benzylamine, increasing the overall surface area facilitated the most significant improvement in photocatalytic performance. This study, therefore, enabled both phase allocation and a nuanced discussion of the structure-property relationship for complicated, ultra-thin photocatalysts.
Collapse
Affiliation(s)
- Melissa Marks
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Åbogade 40, Aarhus N, 8200, Denmark
| | - Henrik Jeppesen
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany
| | - Mads Lund Nygaard Nielsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
| | - Jintao Kong
- Department of Chemical Engineering, Technische Universiteit Delft, Delft, HZ 2629, The Netherlands
| | - Marcel Ceccato
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Åbogade 40, Aarhus N, 8200, Denmark
| | - Monique A van der Veen
- Department of Chemical Engineering, Technische Universiteit Delft, Delft, HZ 2629, The Netherlands
| | - Espen Drath Bøjesen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
- iMAT Aarhus University Centre for Integrated Materials Research, Aarhus University, Langelandsgade 140, Aarhus C, 8000, Denmark
| | - Nina Lock
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Åbogade 40, Aarhus N, 8200, Denmark
| |
Collapse
|
3
|
Li C, Lu X, Chen L, Xie X, Qin Z, Ji H, Su T. WO 3/BiOBr S-Scheme Heterojunction Photocatalyst for Enhanced Photocatalytic CO 2 Reduction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3199. [PMID: 38998282 PMCID: PMC11242261 DOI: 10.3390/ma17133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The photocatalytic CO2 reduction strategy driven by visible light is a practical way to solve the energy crisis. However, limited by the fast recombination of photogenerated electrons and holes in photocatalysts, photocatalytic efficiency is still low. Herein, a WO3/BiOBr S-scheme heterojunction was formed by combining WO3 with BiOBr, which facilitated the transfer and separation of photoinduced electrons and holes and enhanced the photocatalytic CO2 reaction. The optimized WO3/BiOBr heterostructures exhibited best activity for photocatalytic CO2 reduction without any sacrificial reagents, and the CO yield reached 17.14 μmol g-1 after reaction for 4 h, which was 1.56 times greater than that of BiOBr. The photocatalytic stability of WO3/BiOBr was also improved.
Collapse
Affiliation(s)
- Chen Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xingyu Lu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liuyun Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xinling Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuzeng Qin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongbing Ji
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongming Su
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Xu L, Yu JC, Wang Y. Recent advances on bismuth oxyhalides for photocatalytic CO 2 reduction. J Environ Sci (China) 2024; 140:183-203. [PMID: 38331499 DOI: 10.1016/j.jes.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 02/10/2024]
Abstract
Photocatalytic conversion of CO2 into fuels such as CO, CH4, and CH3OH, is a promising approach for achieving carbon neutrality. Bismuth oxyhalides (BiOX, where X = Cl, Br, and I) are appropriate photocatalysts for this purpose due to the merits of visible-light-active, efficient charge separation, and easy-to-modify crystal structure and surface properties. For practical applications, multiple strategies have been proposed to develop high-efficiency BiOX-based photocatalysts. This review summarizes the development of different approaches to prepare BiOX-based photocatalysts for efficient CO2 reduction. In the review, the fundamentals of photocatalytic CO2 reduction are introduced. Then, several widely used modification methods for BiOX photocatalysts are systematacially discussed, including heterojunction construction, introducing oxygen vacancies (OVs), Bi-enrichment, heteroatom-doping, and morphology design. Finally, the challenges and prospects in the design of future BiOX-based photocatalysis for efficient CO2 reduction are examined.
Collapse
Affiliation(s)
- Liangpang Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| |
Collapse
|
5
|
Xue S, Wei C, Shen M, Liang X, Wang J, Yang C, Xing W, Wang S, Lin W, Yu Z, Hou Y, Yu JC, Wang X. Enriching surface-ordered defects on WO 3 for photocatalytic CO 2-to-CH 4 conversion by water. Proc Natl Acad Sci U S A 2024; 121:e2319751121. [PMID: 38662548 PMCID: PMC11066983 DOI: 10.1073/pnas.2319751121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 05/05/2024] Open
Abstract
Defect engineering has been widely applied in semiconductors to improve photocatalytic properties by altering the surface structures. This study is about the transformation of inactive WO3 nanosheets to a highly effective CO2-to-CH4 conversion photocatalyst by introducing surface-ordered defects in abundance. The nonstoichiometric WO3-x samples were examined by using aberration-corrected electron microscopy. Results unveil abundant surface-ordered terminations derived from the periodic {013} stacking faults with a defect density of 20.2%. The {002} surface-ordered line defects are the active sites for fixation CO2, transforming the inactive WO3 nanosheets into a highly active catalyst (CH4: O2 = 8.2: 16.7 μmol h-1). We believe that the formation of the W-O-C-W-O species is a critical step in the catalytic pathways. This work provides an atomic-level comprehension of the structural defects of catalysts for activating small molecules.
Collapse
Affiliation(s)
- Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China, College of Chemical Engineering, Fuzhou University, Quanzhou362114, People’s Republic of China
| | - Changgeng Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Min Shen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Jiali Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
| | - Jimmy C. Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong999077, People’s Republic of China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350108, People’s Republic of China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China, College of Chemical Engineering, Fuzhou University, Quanzhou362114, People’s Republic of China
| |
Collapse
|
6
|
Chen C, Wu M, Chen B, Ma C, Song M, Jiang G. Triggering photocatalytic performance of La 2Co xMn 2-xO 6 via heat activation. Proc Natl Acad Sci U S A 2023; 120:e2310004120. [PMID: 37871212 PMCID: PMC10622888 DOI: 10.1073/pnas.2310004120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
The La-based perovskite (LaBO3) exhibits excellent optical properties. However, its valence band (VB) potential is not sufficiently positive to reach the oxidation potential required for the cleavage of chemical bonds (such as benzylic C-H), limiting its application in photocatalysis. Herein, we report the unconventional effects of heat activation on the reduction of the dissociation energy of benzylic C-H and aqueous H-O, thereby triggering the photocatalytic activity of La2CoxMn2-xO6 perovskites. Additionally, we demonstrate that photocatalysis is the main contributor to substrate conversion in the selective oxidation of toluene and reduction of CO2. Particularly, La2Co1.5Mn0.5O6 shows excellent performance with a product yield of 550.00 mmol gcat-1 and a toluene conversion of 22,866.67 μmol gcat-1 h-1. To the best of our knowledge, this is the highest reported product yield for the selective oxidation of benzylic C-H bond of toluene. Our findings provide insight into the specific role of heat activation in photocatalysis, which is crucial for breaking and overcoming the VB barrier to realize challenging reactions.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan430056, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
7
|
Luo H, Jiang T, Zhan C, He N, Tan L, Jiang F, Chen H. Extended application of defective metal oxide BiO 2-x: Liquid phase low-temperature thermal catalysis for the removal of phenolic pollutants. ENVIRONMENTAL RESEARCH 2023; 228:115854. [PMID: 37037313 DOI: 10.1016/j.envres.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Bismuth oxide (BiO2-x) with oxygen vacancies was created using a hydrothermal process and was found to exhibit good catalytic oxidation performance under low-temperature heating without the addition of external oxidants. The catalytic activity of BiO2-x was tested using 4-chlorophenol (4-CP) as the target aqueous pollutant. We observed that 10 ppm of 4-CP was completely degraded within 40 min at a reaction temperature of 65 °C. The effective elimination of 4-CP was attributed to active oxygen species produced by the release of lattice oxygen. Furthermore, the low-temperature thermal catalytic activity of BiO2-x was affected by the electron transfer characteristics of pollutants, leading to the rapid degradation of electron-rich pollutants. This study reveals the unique application of BiO2-x as a catalyst for removing phenolic pollutants under low-temperature thermal catalysis, thereby expanding its catalytic application scenarios and offering a new approach for the degradation of phenolic pollutants.
Collapse
Affiliation(s)
- Haopeng Luo
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tingjin Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chuanxiang Zhan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Nannan He
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ling Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
8
|
Yuan Z, Zhu X, Gao Q, Jiang Z. Light Control-Induced Oxygen Vacancy Generation and In Situ Surface Heterojunction Reconstruction for Boosting CO 2 Reduction. Molecules 2023; 28:molecules28104057. [PMID: 37241798 DOI: 10.3390/molecules28104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The weak adsorption of CO2 and the fast recombination of photogenerated charges harshly restrain the photocatalytic CO2 reduction efficiency. The simultaneous catalyst design with strong CO2 capture ability and fast charge separation efficiency is challenging. Herein, taking advantage of the metastable characteristic of oxygen vacancy, amorphous defect Bi2O2CO3 (named BOvC) was built on the surface of defect-rich BiOBr (named BOvB) through an in situ surface reconstruction progress, in which the CO32- in solution reacted with the generated Bi(3-x)+ around the oxygen vacancies. The in situ formed BOvC is tightly in contact with the BOvB and can prevent the further destruction of the oxygen vacancy sites essential for CO2 adsorption and visible light utilization. Additionally, the superficial BOvC associated with the internal BOvB forms a typical heterojunction promoting the interface carriers' separation. Finally, the in situ formation of BOvC boosted the BOvB and showed better activity in the photocatalytic reduction of CO2 into CO (three times compared to that of pristine BiOBr). This work provides a comprehensive solution for governing defects chemistry and heterojunction design, as well as gives an in-depth understanding of the function of vacancies in CO2 reduction.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xianglin Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qichao Gao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
9
|
Zuo C, Su Q, Jiang Z. Advances in the Application of Bi-Based Compounds in Photocatalytic Reduction of CO 2. Molecules 2023; 28:molecules28103982. [PMID: 37241723 DOI: 10.3390/molecules28103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Bi-based semiconductor materials have special layered structure and appropriate band gap, which endow them with excellent visible light response ability and stable photochemical characteristics. As a new type of environment-friendly photocatalyst, they have received extensive attention in the fields of environmental remediation and energy crisis resolution and have become a research hotspot in recent years. However, there are still some urgent issues that need to be addressed in the practical large-scale application of Bi-based photocatalysts, such as the high recombination rate of photogenerated carriers, limited response range to visible spectra, poor photocatalytic activity, and weak reduction ability. In this paper, the reaction conditions and mechanism of photocatalytic reduction of CO2 and the typical characteristics of Bi-based semiconductor materials are introduced. On this basis, the research progress and application results of Bi-based photocatalysts in the field of reducing CO2, including vacancy introduction, morphological control, heterojunction construction, and co-catalyst loading, are emphasized. Finally, the future prospects of Bi-based photocatalysts are prospected, and it is pointed out that future research directions should be focused on improving the selectivity and stability of catalysts, deeply exploring reaction mechanisms, and meeting industrial production requirements.
Collapse
Affiliation(s)
- Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Zaiyong Jiang
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
10
|
Sun Y, Younis SA, Kim KH, Kumar V. Potential utility of BiOX photocatalysts and their design/modification strategies for the optimum reduction of CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160923. [PMID: 36543271 DOI: 10.1016/j.scitotenv.2022.160923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
As an effective means to efficiently control the emissions of carbon dioxide (CO2), photo-conversion of CO2 into solar fuels (or their precursors) is meaningful both as an option to generate cleaner energy and to alleviate global warming. In this regard, bismuth oxyhalide (BiOX, where X = Cl, Br, and I) semiconductors have sparked considerable interest due to their multiple merits (e.g., visible light-harvesting, efficient charge carriers separation, and excellent chemical stability). In this review, the fundamental aspects of BiOX-based photocatalysts are discussed in relation to their modification strategies and associated reduction mechanisms of CO2 to help expand their applicabilities. In this context, their performance is also evaluated in terms of the key performance metrics (e.g., quantum efficiency (QE), space-time yield (STY), and figure of merit (FoM)). Accordingly, the morphology design of BiOX materials is turned out as one of the most efficient strategies for the maximum yield of CO while the introduction of heterojunctions into BiOX materials was more suitable for CH4 formation. As such, the adoption of the proper modification approach is recommended for efficient conversion of CO2.
Collapse
Affiliation(s)
- Yang Sun
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04673, Republic of Korea.
| | - Vanish Kumar
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| |
Collapse
|
11
|
Ni M, Zhu Y, Guo C, Chen DL, Ning J, Zhong Y, Hu Y. Efficient Visible-Light-Driven CO 2 Methanation with Self-Regenerated Oxygen Vacancies in Co 3O 4/NiCo 2O 4 Hetero-Nanocages: Vacancy-Mediated Selective Photocatalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Maomao Ni
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yijia Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Changfa Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Jiqiang Ning
- Department of Optical Science and Engineering, Fudan University, Shanghai200438, China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua321004, China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou311231, China
| |
Collapse
|
12
|
Tan Z, Kong XY, Ng BJ, Soo HS, Mohamed AR, Chai SP. Recent Advances in Defect-Engineered Transition Metal Dichalcogenides for Enhanced Electrocatalytic Hydrogen Evolution: Perfecting Imperfections. ACS OMEGA 2023; 8:1851-1863. [PMID: 36687105 PMCID: PMC9850467 DOI: 10.1021/acsomega.2c06524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Switching to renewable, carbon-neutral sources of energy is urgent and critical for climate change mitigation. Despite how hydrogen production by electrolyzing water can enable renewable energy storage, current technologies unfortunately require rare and expensive platinum group metal electrocatalysts, which limit their economic viability. Transition metal dichalcogenides (TMDs) are low-cost, earth-abundant materials that possess the potential to replace platinum as the hydrogen evolution catalyst for water electrolysis, but so far, pristine TMDs are plagued by poor catalytic performances. Defect engineering is an attractive approach to enhance the catalytic efficiency of TMDs and is not subjected to the limitations of other approaches like phase engineering and surface structure engineering. In this minireview, we discuss the recent progress made in defect-engineered TMDs as efficient, robust, and low-cost catalysts for water splitting. The roles of chalcogen atomic defects in engineering TMDs for improvements to the hydrogen evolution reaction (HER) are summarized. Finally, we highlight our perspectives on the challenges and opportunities of defect engineering in TMDs for electrocatalytic water splitting. We hope to provide inspirations for designing the state-of-the-art catalysts for future breakthroughs in the electrocatalytic HER.
Collapse
Affiliation(s)
- Zheng
Hao Tan
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, 637371Singapore
| | - Xin Ying Kong
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, 637371Singapore
| | - Boon-Junn Ng
- Multidisciplinary
Platform of Advanced Engineering, Chemical Engineering Discipline,
School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500Selangor, Malaysia
| | - Han Sen Soo
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, 637371Singapore
| | - Abdul Rahman Mohamed
- Low
Carbon Economy (LCE) Group, School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300Nibong Tebal, Pulau Pinang, Malaysia
| | - Siang-Piao Chai
- Multidisciplinary
Platform of Advanced Engineering, Chemical Engineering Discipline,
School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500Selangor, Malaysia
| |
Collapse
|
13
|
Yang X, Li K, Wang G, Li X, Zhou P, Ding S, Lyu Z, Chang Y, Zhou Y, Zhu W. 2D Catalysts for CO
2
Photoreduction: Discussing Structure Efficiency Strategies and Prospects for Scaled Production Based on Current Progress. Chemistry 2022; 28:e202201881. [DOI: 10.1002/chem.202201881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohan Yang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P. R. China
| | - Kai Li
- School of Science Wuhan University of Science and Technology Wuhan 430065 P. R. China
| | - Guangtao Wang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P. R. China
| | - Xiang Li
- State Key Laboratory of Pollution Control and Resource Reuse State Key Laboratory of Analytical Chemistry for Life Science the Frontiers Science Center for Critical Earth Material Cycling School of the Environment School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Pengyu Zhou
- State Key Laboratory of Pollution Control and Resource Reuse State Key Laboratory of Analytical Chemistry for Life Science the Frontiers Science Center for Critical Earth Material Cycling School of the Environment School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Yu‐Chung Chang
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P. R. China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse State Key Laboratory of Analytical Chemistry for Life Science the Frontiers Science Center for Critical Earth Material Cycling School of the Environment School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
14
|
Vinoth S, Ong WJ, Pandikumar A. Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Liu H, Ding H, Zahid AH, Han Q. CTAB-assisted construction of 3D flower-sphere S-scheme Bi12O17Br2/Bi4O5Br2 heterojunction with enhanced visible-light photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
The Organic Bromide Sources Adjusting the Shape and Band Structures of BiOBr Nanosheets for Enhanced Photodegradation Performances of BPA. Catalysts 2022. [DOI: 10.3390/catal12080820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bismuth oxybromide (BiOBr) nanosheets were prepared by employing organic bromide sources. In the presence of organic bromide sources, the effects of different conditions on the band structure, shape, size, and light responses of BiOBr nanosheets were examined. The reaction conditions, including different types of organic bromide sources, solvent, concentration, temperature, and time, were examined regarding the formation of BiOBr nanosheets. Then, the photocatalytic performances of different BiOBr nanosheets were also examined. Especially, the BiOBr nanosheets obtained from the addition of over 2 mmol of tetramethyl ammonium bromide (TMAB) in mannitol or EG at a higher temperature and longer reaction time showed superior photocatalytic activity. The enhanced photocatalytic performance of bisphenol A over these BiOBr nanosheets was achieved within 50 min due to efficient charge transfer and separation.
Collapse
|
17
|
Jia X, Lin H, Cao J, Hu C, Sun H, Chen S. Synergistic introduction of oxygen vacancy and silver/silver iodide: Realizing deep structure regulation on bismuth oxybromide for robust carbon dioxide reduction and pollutant oxidation. J Colloid Interface Sci 2022; 624:181-195. [PMID: 35660887 DOI: 10.1016/j.jcis.2022.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
To efficiently solve severe energy shortage and environmental pollution issues, step-scheme (S-scheme) photocatalytic system, as perfect photocatalyst with strong redox ability and swift separation efficiency of carriers, has been considered a feasible tactic. Herein, a novel S-scheme silver/silver iodide/bismuth oxybromide heterojunction with rich oxygen vacancies (OVs) (labeled as Ag/AgI/BiO1-xBr) was in situ fabricated via a simple photodeposition-precipitation method. It was discovered that the obtained Ag/AgI/BiO1-xBr heterojunction with the optimized molar ratio of silver/bismuth (Ag/Bi) at 0.4 presented excellent photocatalytic properties for carbon dioxide (CO2) reduction (2.46 μmol g-1h-1 carbon monoxide (CO) and 1.25 μmol g-1h-1 methane (CH4) generation) and antibiotic tetracycline (TC) removal (96.7%) even in actual waste water or in the presence of electrolytes. The enhanced performance of S-scheme Ag/AgI/BiO1-xBr composite may be ascribed to the collaborative effect of OVs and silver/silver iodide (Ag/AgI), in which OVs acted as the charge transmission bridge for reducing the interface migration resistance of the charge and Ag/AgI served as a cocatalyst for enhancing the separation efficiency of carriers. Furthermore, a feasible photocatalytic mechanism was discussed via density functional theory calculation and in-situ X-ray photoelectron spectroscopy. This work not only demonstrated the synergistic application of OVs transmission bridge and Ag/AgI cocatalyst, but also provided a facile way to design high-efficiency and stable photocatalysts for energy production and environmental remediation.
Collapse
Affiliation(s)
- Xuemei Jia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| | - Haili Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Jing Cao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| | - Cheng Hu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Haoyu Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| |
Collapse
|
18
|
Zhang M, Ke J, Xu D, Zhang X, Liu H, Wang Y, Yu J. Construction of plasmonic Bi/Bismuth oxycarbonate/Zinc bismuth oxide ternary heterojunction for enhanced charge carrier separation and photocatalytic performances. J Colloid Interface Sci 2022; 615:663-673. [PMID: 35158197 DOI: 10.1016/j.jcis.2022.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 12/30/2022]
Abstract
In this work, a novel plasmonic ternary Bi/Bismuth oxycarbonate/Zinc bismuth oxide (Bi-Bi2O2CO3-ZnBi2O4) is synthesized synergistically by a one-step hydrothermal method. The results show that the metallic Bi spheres and ZnBi2O4 nanoparticles are uniformly distributed on the surface of flower-like Bi2O2CO3 layer. Compared with the bare ZnBi2O4 and Bi-Bi2O2CO3, the ternary Bi-Bi2O2CO3-ZnBi2O4 heterojunction displays a significantly improved solar energy harvesting efficiency and enhanced photocatalytic degradation activity for environmental organic pollutants. The degradation efficiency of organics reaches to 98.4% under simulated solar light illumination. The degradation kinetics indicates that the photocatalytic reaction rate constant of ternary system is about 4.4 and 29.5 times higher than that of pure ZnBi2O4 and Bi-Bi2O2CO3, respectively. Moreover, O2- and h+ are the main active species in the photodegradation reaction. The improvement of the photocatalytic activity of the composites is attributed to the synergistic effect of ternary heterostructure and surface plasmon resonance (SPR), which promotes charge transfer and effectively inhibits the recombination of photogenerated carriers.
Collapse
Affiliation(s)
- Manlin Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jun Ke
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; Hubei Engineering Technology Research Center for Chemical Industry Pollution Control, Wuhan 430205, PR China.
| | - Desheng Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiaoyu Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hengyu Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yiran Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
19
|
Liu G, Wang B, Zhu X, Ding P, Zhao J, Li H, Chen Z, Zhu W, Xia J. Edge-Site-Rich Ordered Macroporous BiOCl Triggers CO Activation for Efficient CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105228. [PMID: 34850545 DOI: 10.1002/smll.202105228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Endowing a semiconductor with tunable edge active sites will effectively enhance catalytic performance. Herein, an edge-site-rich ordered macroporous BiOCl (BiOCl-P) with abundant dangling bonds is constructed via the colloidal crystal template method. The edge-site-rich ordered macroporous structure provides abundant adsorption sites for CO2 molecules, as well as forms numerous localized electron enrichment areas, accelerating charge transfer. DFT calculations reveal that the dangling bonds-rich configuration can effectively reduce the CO2 activation energy barrier, boost the CO double bond dissociation, and facilitate the proton electron coupling reaction. As a result, the BiOCl-P achieves a higher CO and CH4 generation rate of 78.07 and 3.03 µmol g-1 under 4 h Xe lamp irradiation in a solid-gas system. Finally, the CO2 molecules' conversion process is further investigated by in situ Fourier-transform infrared spectroscopy. This work realizes a new avenue toward the design of vibrant semiconductors on the nanoscale to boost inert CO2 photoreduction.
Collapse
Affiliation(s)
- Gaopeng Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xingwang Zhu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Penghui Ding
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Junze Zhao
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Ziran Chen
- Department of Architecture and Environment Engineering, Sichuan Vocational and Technical College, Suining, 629000, P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
20
|
Kozlova EA, Lyulyukin MN, Kozlov DV, Parmon VN. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the current knowledge about heterogeneous semiconductor photocatalysts that are active towards photocatalytic reduction of carbon dioxide and molecular nitrogen under visible and near-UV light. The main classes of these photocatalysts and characteristic features of their application in the target processes are considered. Primary attention is given to photocatalysts based on titanium dioxide, which have high activity and stability in the carbon dioxide reduction. For the first time, the photofixation of nitrogen under irradiation in the presence of various semiconductor materials is considered in detail.
The bibliography includes 264 references.
Collapse
|
21
|
Zhao GQ, Hu J, Long X, Zou J, Yu JG, Jiao FP. A Critical Review on Black Phosphorus-Based Photocatalytic CO 2 Reduction Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102155. [PMID: 34309180 DOI: 10.1002/smll.202102155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Energy shortages and greenhouse effects are two unavoidable problems that need to be solved. Photocatalytically converting CO2 into a series of valuable chemicals is considered to be an effective means of solving the above dilemmas. Among these photocatalysts, the utilization of black phosphorus for CO2 photocatalytic reduction deserves a lightspot not only for its excellent catalytic activity through different reaction routes, but also on account of the great preponderance of this relatively cheap catalyst. Herein, this review offers a summary of the recent advances in synthesis, structure, properties, and application for CO2 photocatalytic reduction. In detail, the review starts from the basic principle of CO2 photocatalytic reduction. In the following section, the synthesis, structure, and properties, as well as CO2 photocatalytic reduction process of black phosphorus-based photocatalyst are discussed. In addition, some possible influencing factors and reaction mechanism are also summarized. Finally, a summary and the possible future perspectives of black phosphorus-based photocatalyst for CO2 reduction are established.
Collapse
Affiliation(s)
- Guo-Qing Zhao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xuan Long
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jiao Zou
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jin-Gang Yu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fei-Peng Jiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
22
|
Song J, Zhang Z, Zhi S, Niu B, Dong H, Wu D, Jiang K. Oxygen-vacancy-rich BiOCl with 3D network structure for enhanced photocatalytic CO2 reduction and antibiotic degradation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Fabrication and regulation of vacancy-mediated bismuth oxyhalide towards photocatalytic application: Development status and tendency. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214033] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Shen M, Zhang L, Shi J. Defect Engineering of Photocatalysts towards Elevated CO 2 Reduction Performance. CHEMSUSCHEM 2021; 14:2635-2654. [PMID: 33872463 DOI: 10.1002/cssc.202100677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic CO2 reduction provides a promising solution to address the crises of massive CO2 emissions and fossil energy shortages. As one of the most effective strategies to promote CO2 photoconversion, defect engineering shows great potential in modulating the electronic structure and light absorption properties of photocatalysts while increasing surface active sites for CO2 activation and conversion. This Review summarizes the recent progress in defect engineering of photocatalysts to promote CO2 reduction performances from the following four aspects: 1) Approaches to defect (mainly vacancy and dopant) generation in photocatalysts; 2) defect structure characterization techniques; 3) physical and chemical properties of defect-engineered photocatalysts; 4) CO2 reduction performance enhancements in activity, selectivity, and stability of photocatalysts by defect engineering. This Review is expected to present readers with a comprehensive view of progress in the field of photocatalytic CO2 reduction through defect engineering for elevated CO2 -to-fuels conversion efficiency.
Collapse
Affiliation(s)
- Meng Shen
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
| | - Lingxia Zhang
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Jianlin Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquanlu, 19 A, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Shi M, Rhimi B, Zhang K, Xu J, Bahnemann DW, Wang C. Visible light-driven novel Bi 2Ti 2O 7/CaTiO 3 composite photocatalyst with enhanced photocatalytic activity towards NO removal. CHEMOSPHERE 2021; 275:130083. [PMID: 33662727 DOI: 10.1016/j.chemosphere.2021.130083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 05/29/2023]
Abstract
Photocatalysis is regarded as a promising technology for removal of nitrogen oxide (NO), however, the low photocatalytic efficiencies under visible light irradiation and the deactivation of the photocatalyst are as yet the significant issues that should be addressed. In this work, visible-light-driven Bi2Ti2O7/CaTiO3 heterojunction composites were synthesized by a facile in-situ hydrothermal method. The Bi2Ti2O7/CaTiO3 composites displayed superior visible light photocatalytic activity than pure CaTiO3 and pure Bi2Ti2O7 in the removal of NO at the 600 ppb level in air. Among all the composites, Bi2Ti2O7/CaTiO3 containing 20 wt% Bi2Ti2O7 exhibited the best photocatalytic activity, achieving a maximum removal efficiency of 59%. The improved photocatalytic performance is mainly attributed to the strong visible-light-absorbing ability, the presence of an appropriate density of oxygen vacancy defects and the formation of heterojunction between CaTiO3 and Bi2Ti2O7, resulting in an efficient charge separation at the interface as proven by photoluminescence (PL) and photo-induced current measurements. According to trapping experiments and spin-trapping ESR analysis, the •O2- and h+ are the principal reactive species involved in the photocatalytic NO removal. In addition, the as-obtained Bi2Ti2O7/CaTiO3 composite showed good chemical stability, which is beneficial for practical applications in air pollution removal.
Collapse
Affiliation(s)
- Menglin Shi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Baker Rhimi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Ke Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, PR China
| | - Detlef W Bahnemann
- Institut Fuer Technische Chemie, Gottfried Wilhelm Leibniz Universitaet Hannover, Callinstrasse 3, D-30167, Hannover, Germany; Laboratory of Photoactive Nanocomposite Materials, Saint-Petersburg State University, Ulyanovskaya Str. 1, Peterhof, Saint-Petersburg, 198504, Russia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| |
Collapse
|
26
|
Wang HN, Zou YH, Sun HX, Chen Y, Li SL, Lan YQ. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213906] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Wang M, Tan G, Feng S, Dang M, Wang Y, Zhang B, Ren H, Lv L, Xia A, Liu W, Liu Y. Defects and internal electric fields synergistically optimized g-C 3N 4-x/BiOCl/WO 2.92 heterojunction for photocatalytic NO deep oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124897. [PMID: 33360701 DOI: 10.1016/j.jhazmat.2020.124897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
In this work, g-C3N4-x/BiOCl/WO2.92 heterojunction with "N-O" vacancies was prepared using NaBiO3 and WCl6 as raw materials and non-metal plasma of WO2.92 grew in-situ on the surface of BiOCl, resulting in the enhanced photocatalytic NO deep oxidation. XPS tests and DFT calculation indicated the formation of internal electric fields from g-C3N4-x to BiOCl, BiOCl to WO2.92, which induced the transition from Ⅱ-Ⅱ-type to double Z-scheme hetero-structure. High separation efficiency, prolong lifetime and strong redox ability of photo-generated electron-hole pairs were simultaneously achieved due to the charge capture effect of defects and double Z-scheme mechanism. Therefore, g-C3N4-x/BiOCl/WO2.92 exhibited the significantly increased NO removal rates from 21.17% (BiOCl/WO2.92) and 36.52% (g-C3N4-x) to 68.70% and the main oxidation product of NO was NO3-. This study revealed that the carrier dynamics of heterojunction photocatalysts could be optimized by the synergistic effect of defects and internal electric fields to achieve photocatalytic NO deep oxidization.
Collapse
Affiliation(s)
- Min Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Shuaijun Feng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Mingyue Dang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yong Wang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bixin Zhang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Huijun Ren
- School of Arts and Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Long Lv
- College of Cryptography Engineering, Engineering University of PAP, Xi'an 710086, China
| | - Ao Xia
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wenlong Liu
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yun Liu
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
29
|
Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications. Catalysts 2021. [DOI: 10.3390/catal11040426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Semiconductor-based photocatalysis has been identified as an encouraging approach for solving the two main challenging problems, viz., remedying our polluted environment and the generation of sustainable chemical energy. Stoichiometric and non-stoichiometric bismuth oxyhalides (BiOX and BixOyXz where X = Cl, Br, and I) are a relatively new class of semiconductors that have attracted considerable interest for photocatalysis applications due to attributes, viz., high stability, suitable band structure, modifiable energy bandgap and two-dimensional layered structure capable of generating an internal electric field. Recently, the construction of heterojunction photocatalysts, especially 2D/2D systems, has convincingly drawn momentous attention practicably owing to the productive influence of having two dissimilar layered semiconductors in face-to-face contact with each other. This review has systematically summarized the recent progress on the 2D/2D heterojunction constructed between BiOX/BixOyXz with graphitic carbon nitride (g-C3N4). The band structure of individual components, various fabrication methods, different strategies developed for improving the photocatalytic performance and their applications in the degradation of various organic contaminants, hydrogen (H2) evolution, carbon dioxide (CO2) reduction, nitrogen (N2) fixation and the organic synthesis of clean chemicals are summarized. The perspectives and plausible opportunities for developing high performance BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts are also discussed.
Collapse
|
30
|
Huang YT, Kavanagh SR, Scanlon DO, Walsh A, Hoye RLZ. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. NANOTECHNOLOGY 2021; 32:132004. [PMID: 33260167 DOI: 10.1088/1361-6528/abcf6d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lead-halide perovskites have demonstrated astonishing increases in power conversion efficiency in photovoltaics over the last decade. The most efficient perovskite devices now outperform industry-standard multi-crystalline silicon solar cells, despite the fact that perovskites are typically grown at low temperature using simple solution-based methods. However, the toxicity of lead and its ready solubility in water are concerns for widespread implementation. These challenges, alongside the many successes of the perovskites, have motivated significant efforts across multiple disciplines to find lead-free and stable alternatives which could mimic the ability of the perovskites to achieve high performance with low temperature, facile fabrication methods. This Review discusses the computational and experimental approaches that have been taken to discover lead-free perovskite-inspired materials, and the recent successes and challenges in synthesizing these compounds. The atomistic origins of the extraordinary performance exhibited by lead-halide perovskites in photovoltaic devices is discussed, alongside the key challenges in engineering such high-performance in alternative, next-generation materials. Beyond photovoltaics, this Review discusses the impact perovskite-inspired materials have had in spurring efforts to apply new materials in other optoelectronic applications, namely light-emitting diodes, photocatalysts, radiation detectors, thin film transistors and memristors. Finally, the prospects and key challenges faced by the field in advancing the development of perovskite-inspired materials towards realization in commercial devices is discussed.
Collapse
Affiliation(s)
- Yi-Teng Huang
- Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | - Seán R Kavanagh
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - David O Scanlon
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Aron Walsh
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
31
|
Wang L, Zhao C, Xiang Z, Zhang Y, Ma N, Shen J, Peng X, Zhang S, Li Z, Wu Z. Refining the band structure of BiOBr nanosheets through the synergetic effect of VO 43− ions replacement and oxygen vacancies for promoted visible-light-driven photocatalysis. CrystEngComm 2021. [DOI: 10.1039/d1ce00468a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The band structure of BiOBr nanosheets is regulated by the oxygen vacancies and VO43− ions replacement. The BiOBr nanosheets possess defective states and a more negative conduction band potential, promoting visible-light photocatalytic activity.
Collapse
Affiliation(s)
- Lulu Wang
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
| | - Changming Zhao
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
| | - Zhengrong Xiang
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
| | - Yi Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
| | - Nan Ma
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
| | - Jie Shen
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
| | - Xiahui Peng
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
| | - Shiying Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
| | - Zhongfu Li
- School of Materials Science and Engineering
- Shandong University of Technology
- Zibo 255000
- China
| | - Zhaohui Wu
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- China
- Department of Chemistry
| |
Collapse
|
32
|
Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Kong XY, Tong T, Ng BJ, Low J, Zeng TH, Mohamed AR, Yu J, Chai SP. Topotactic Transformation of Bismuth Oxybromide into Bismuth Tungstate: Bandgap Modulation of Single-Crystalline {001}-Faceted Nanosheets for Enhanced Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26991-27000. [PMID: 32433865 DOI: 10.1021/acsami.9b15950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photocatalytic conversion of CO2 to energy-rich CH4 solar fuel is an ideal strategy for future energy generation as it can resolve global warming and the imminent energy crisis concurrently. However, the efficiency of this technology is unavoidably hampered by the ineffective generation and utilization of photoinduced charge carriers. In this contribution, we report a facile in situ topotactic transformation approach where {001}-faceted BiOBr nanosheets (BOB-NS) were employed as the starting material for the formation of single-crystalline ultrathin Bi2WO6 nanosheets (BWO-NS). The as-obtained BWO-NS not only preserved the advantageous properties of the 2D nanostructure and predominantly exposed {001} facets but also possessed enlarged specific surface areas as a result of sample thickness reduction. As opposed to the commonly observed bandgap broadening when the particle sizes decrease to an ultrathin nanoscale owing to the quantum size effect, the developed BWO-NS exhibited a fascinating bandgap narrowing compared to those of pristine Bi2WO6 nanoplates (BWO-P) synthesized from a conventional one-step hydrothermal approach. Moreover, the electronic band positions of BWO-NS were modulated as a result of ion exchange for the reconstruction of the energy bands, where BWO-NS demonstrated significant upshifting of CB and VB levels; these are beneficial for photocatalytic reduction applications. This propitious design of BWO-NS through integrating the merits of BOB-NS caused BWO-NS to exhibit substantial 2.6 and 9.3-fold enhancements of CH4 production over BOB-NS and BWO-P, respectively.
Collapse
Affiliation(s)
- Xin Ying Kong
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Tong Tong
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P. R. China
| | - Boon-Junn Ng
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Jingxiang Low
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P. R. China
| | - Tingying Helen Zeng
- Academy for Advanced Research and Development, Cambridge Innovation Centre, One Broadway, Cambridge, Massachusetts 02142, United States
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Group, School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P. R. China
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
34
|
Wang X, Zhong X, Bai L, Xu J, Gong F, Dong Z, Yang Z, Zeng Z, Liu Z, Cheng L. Ultrafine Titanium Monoxide (TiO 1+x) Nanorods for Enhanced Sonodynamic Therapy. J Am Chem Soc 2020; 142:6527-6537. [PMID: 32191455 DOI: 10.1021/jacs.9b10228] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT) that enables noninvasive treatment of large internal tumors has attracted widespread interest. For improvement in the therapeutic responses to SDT, more effective and stable sonosensitizers are still required. Herein, ultrafine titanium monoxide nanorods (TiO1+x NRs) with greatly improved sono-sensitization and Fenton-like catalytic activity were fabricated and used for enhanced SDT. TiO1+x NRs with an ultrafine rodlike structure were successfully prepared and then modified with polyethylene glycol (PEG). Compared to the conventional sonosensitizer, TiO2 nanoparticles, the PEG-TiO1+x NRs resulted in much more efficient US-induced generation of reactive oxygen species (ROS) because of the oxygen-deficient structure of TiO1+x NR, which predominantly serves as the charge trap to limit the recombination of US-triggered electron-hole pairs. Interestingly, PEG-TiO1+x NRs also exhibit horseradish-peroxidase-like nanozyme activity and can produce hydroxyl radicals (•OH) from endogenous H2O2 in the tumor to enable chemodynamic therapy (CDT). Because of their efficient passive retention in tumors post intravenous injection, PEG-TiO1+x NRs can be used as a sonosensitizer and CDT agent for highly effective tumor ablation under US treatment. In addition, no significant long-term toxicity of PEG-TiO1+x NRs was found for the treated mice. This work highlights a new type of titanium-based nanostructure with great performance for tumor SDT.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoyan Zhong
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Lixin Bai
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Zhijuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Zhijie Zeng
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
35
|
Lan M, Zheng N, Dong X, Hua C, Ma H, Zhang X. Bismuth-rich bismuth oxyiodide microspheres with abundant oxygen vacancies as an efficient photocatalyst for nitrogen fixation. Dalton Trans 2020; 49:9123-9129. [DOI: 10.1039/d0dt01332c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined bismuth-rich and defect introduction strategy was used to prepare the H-Bi5O7I with abundant oxygen vacancies, which can effectively yield ammonia under visible light without any organic scavengers or noble-metal cocatalysts.
Collapse
Affiliation(s)
- Meng Lan
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Nan Zheng
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Chenghe Hua
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|
36
|
Wu Z, Wu M, Li Z, Pan Y, Qiu J, Li T, Xu K, Zhang S, Xu D, Guo M. Regulating the phase transition of monoclinic Bi 4O 5Br 2 through the synergistic effect of “drag force” and facet recognition by branched polyethyleneimine. CrystEngComm 2020. [DOI: 10.1039/d0ce00932f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synergistic effect of the “drag force” and facet recognition by BPEI was the driving force for the phase transition of BiOBr to Bi4O5Br2.
Collapse
Affiliation(s)
- Zhaohui Wu
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
- Hunan Key Laboratory of Applied Environmental Photocatalysis
| | - Min Wu
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
| | - Zhongfu Li
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
| | - Yue Pan
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
| | - Junhao Qiu
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
| | - Taige Li
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
| | - Kaiqiang Xu
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
| | - Shiying Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
| | - Difa Xu
- Hunan Key Laboratory of Applied Environmental Photocatalysis
- Changsha University
- Changsha 410022
- P. R. China
| | - Manman Guo
- Jiangxi Key Laboratory of Nanomaterials and Sensors
- School of Physics, Communication and Electronics
- Jiangxi Normal University
- Nanchang 330022
- PR China
| |
Collapse
|
37
|
Bhosale SS, Kharade AK, Jokar E, Fathi A, Chang SM, Diau EWG. Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas–Solid Interface. J Am Chem Soc 2019; 141:20434-20442. [DOI: 10.1021/jacs.9b11089] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sumit S. Bhosale
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Aparna K. Kharade
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Efat Jokar
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Amir Fathi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Sue-min Chang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
38
|
Di J, Chen C, Zhu C, Song P, Xiong J, Ji M, Zhou J, Fu Q, Xu M, Hao W, Xia J, Li S, Li H, Liu Z. Bismuth Vacancy-Tuned Bismuth Oxybromide Ultrathin Nanosheets toward Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30786-30792. [PMID: 31362488 DOI: 10.1021/acsami.9b08109] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface defects in semiconductors have a significant role to tune the photocatalytic reactions. However, the dominant studied defect type is oxygen vacancy, and metal cation vacancies are seldom explored. Herein, bismuth vacancies are engineered into BiOBr through ultrathin structure control and employed to tune photocatalytic CO2 reduction. VBi-BiOBr ultrathin nanosheets deliver a high selective CO generation rate of 20.1 μmol g-1 h-1 in pure water, without any cocatalyst, photosensitizer, and sacrificing reagent, roughly 3.8 times higher than that of BiOBr nanosheets. The increased CO2 reduction activity is ascribed to the tuned electronic structure, optimized CO2 adsorption, activation, and CO desorption process over VBi-BiOBr ultrathin nanosheets. This work offers new opportunities for designing surface metal vacancies to optimize the CO2 photoreduction performances.
Collapse
Affiliation(s)
- Jun Di
- School of Chemistry and Chemical Engineering, Institute for Energy Research , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , P. R. China
| | - Chao Chen
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Chao Zhu
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Pin Song
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Jun Xiong
- School of Chemistry and Chemical Engineering, Institute for Energy Research , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , P. R. China
| | - Mengxia Ji
- School of Chemistry and Chemical Engineering, Institute for Energy Research , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , P. R. China
| | - Jiadong Zhou
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Qundong Fu
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Manzhang Xu
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Wei Hao
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , P. R. China
| | - Shuzhou Li
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , P. R. China
| | - Zheng Liu
- School of Materials Science & Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
39
|
Ye L, Deng Y, Wang L, Xie H, Su F. Bismuth-Based Photocatalysts for Solar Photocatalytic Carbon Dioxide Conversion. CHEMSUSCHEM 2019; 12:3671-3701. [PMID: 31107595 DOI: 10.1002/cssc.201901196] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/18/2019] [Indexed: 05/13/2023]
Abstract
Photocatalytic CO2 conversion into solar fuels is an effective means for simultaneously solving both the greenhouse effect and energy crisis. In the past ten years, bismuth-based photocatalysts for environmental remediation have experienced a golden period of development. However, solar photocatalytic CO2 conversion has only been developed over the past five years and, until now, no reviews have been published on bismuth-based photocatalysts for the photocatalytic conversion of CO2 . For the first time, solar photocatalytic CO2 conversion systems are reviewed herein. Synthetic methods and photocatalytic CO2 performances of bismuth-based photocatalysts, including Sillén-structured BiOX (X=Cl, Br, I); Aurivillius-structured Bi2 MO6 (M=Mo, W); and Scheelite-structured BiVO4 , Bi2 S3 , BiYO3 , and BiOIO3 , are summarized. In addition, activity-enhancing strategies for this photocatalyst family, including oxygen vacancies, bismuth-rich strategy, facet control, conventional type II heterojunction, Z-scheme heterojunction, and cocatalyst deposition, are reviewed. Finally, the main mechanistic research methods, such as in situ FTIR spectroscopy and theoretical calculations, are presented. Challenges and research trends reported in studies of bismuth-based photocatalysts for photocatalytic CO2 conversion are discussed and summarized.
Collapse
Affiliation(s)
- Liqun Ye
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, PR China
| | - Yu Deng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, PR China
| | - Li Wang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Haiquan Xie
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Fengyun Su
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| |
Collapse
|
40
|
Ovcharov ML, Mishura AM, Shvalagin VV, Granchak VM. Semiconductor Nanocatalysts for CO2 Photoconversion Giving Organic Compounds: Design and Physicochemical Characteristics: A Review. THEOR EXP CHEM+ 2019. [DOI: 10.1007/s11237-019-09591-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
41
|
Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem Rev 2019; 119:3962-4179. [DOI: 10.1021/acs.chemrev.8b00400] [Citation(s) in RCA: 1094] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
42
|
Tang JY, Kong XY, Ng BJ, Chew YH, Mohamed AR, Chai SP. Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C3N4 atomic layers for superior photocatalytic CO2 reduction. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00449a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study unravels the prominent role of midgap states in boosting the performance of nitrogen defect-modified g-C3N4 atomic layers in a single-catalyst CO2 photoreduction system.
Collapse
Affiliation(s)
- Jie-Yinn Tang
- Multidisciplinary Platform of Advanced Engineering
- Chemical Engineering Discipline
- School of Engineering
- Monash University
- Bandar Sunway
| | - Xin Ying Kong
- Multidisciplinary Platform of Advanced Engineering
- Chemical Engineering Discipline
- School of Engineering
- Monash University
- Bandar Sunway
| | - Boon-Junn Ng
- Multidisciplinary Platform of Advanced Engineering
- Chemical Engineering Discipline
- School of Engineering
- Monash University
- Bandar Sunway
| | - Yi-Hao Chew
- Multidisciplinary Platform of Advanced Engineering
- Chemical Engineering Discipline
- School of Engineering
- Monash University
- Bandar Sunway
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Group
- School of Chemical Engineering
- Universiti Sains Malaysia
- 14300 Nibong Tebal
- Malaysia
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering
- Chemical Engineering Discipline
- School of Engineering
- Monash University
- Bandar Sunway
| |
Collapse
|
43
|
He R, Xu D, Cheng B, Yu J, Ho W. Review on nanoscale Bi-based photocatalysts. NANOSCALE HORIZONS 2018; 3:464-504. [PMID: 32254135 DOI: 10.1039/c8nh00062j] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoscale Bi-based photocatalysts are promising candidates for visible-light-driven photocatalytic environmental remediation and energy conversion. However, the performance of bulk bismuthal semiconductors is unsatisfactory. Increasing efforts have been focused on enhancing the performance of this photocatalyst family. Many studies have reported on component adjustment, morphology control, heterojunction construction, and surface modification. Herein, recent topics in these fields, including doping, changing stoichiometry, solid solutions, ultrathin nanosheets, hierarchical and hollow architectures, conventional heterojunctions, direct Z-scheme junctions, and surface modification of conductive materials and semiconductors, are reviewed. The progress in the enhancement mechanism involving light absorption, band structure tailoring, and separation and utilization of excited carriers, is also introduced. The challenges and tendencies in the studies of nanoscale Bi-based photocatalysts are discussed and summarized.
Collapse
Affiliation(s)
- Rongan He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | |
Collapse
|
44
|
Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.04.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Li M, Huang H, Yu S, Tian N, Zhang Y. Facet, Junction and Electric Field Engineering of Bismuth-Based Materials for Photocatalysis. ChemCatChem 2018. [DOI: 10.1002/cctc.201800859] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Min Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology; China University of Geosciences, Beijing; Beijing 100083 P.R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology; China University of Geosciences, Beijing; Beijing 100083 P.R. China
| | - Shixin Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology; China University of Geosciences, Beijing; Beijing 100083 P.R. China
| | - Na Tian
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology; China University of Geosciences, Beijing; Beijing 100083 P.R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology; China University of Geosciences, Beijing; Beijing 100083 P.R. China
| |
Collapse
|
46
|
Sun Z, Talreja N, Tao H, Texter J, Muhler M, Strunk J, Chen J. Katalyse der Kohlenstoffdioxid-Photoreduktion an Nanoschichten: Grundlagen und Herausforderungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Peking 100029 China
| | - Neetu Talreja
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Peking 100029 China
| | - Hengcong Tao
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Peking 100029 China
| | - John Texter
- School of Engineering Technology; Eastern Michigan University; Ypsilanti MI 48197 USA
| | - Martin Muhler
- Lehrstuhl für Technische Chemie; Ruhr-Universität Bochum; 44780 Bochum Deutschland
| | - Jennifer Strunk
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; 18059 Rostock Deutschland
| | - Jianfeng Chen
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Peking 100029 China
| |
Collapse
|
47
|
Sun Z, Talreja N, Tao H, Texter J, Muhler M, Strunk J, Chen J. Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angew Chem Int Ed Engl 2018; 57:7610-7627. [DOI: 10.1002/anie.201710509] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Neetu Talreja
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Hengcong Tao
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - John Texter
- School of Engineering Technology; Eastern Michigan University; Ypsilanti MI 48197 USA
| | - Martin Muhler
- Laboratory of Industrial Chemistry; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Jennifer Strunk
- Leibniz Institute for Catalysis at the University of Rostock; 18059 Rostock Germany
| | - Jianfeng Chen
- State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
48
|
Yang Y, Zhang C, Lai C, Zeng G, Huang D, Cheng M, Wang J, Chen F, Zhou C, Xiong W. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Adv Colloid Interface Sci 2018; 254:76-93. [PMID: 29602415 DOI: 10.1016/j.cis.2018.03.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Energy and environmental issues are the major concerns in our contemporary "risk society". As a green technique, photocatalysis has been identified as a promising solution for above-mentioned problems. In recent decade, BiOX (X = Cl, Br, I) photocatalytic nanomaterials have sparked numerous interest as economical and efficient photocatalysts for energy conversion and environmental management. The distinctive physicochemical properties of BiOX nanomaterials, especially their energy band structures and levels as well as relaxed layered nanostructures, should be responsible for the visible-light-driven photocatalytic performance improvement, which could be utilized in dealing with the global energy and environmental challenges. In this review, recent advances for the enhancement of BiOX photocatalytic activity are detailedly summarized. Furthermore, the applications of BiOX photocatalysts in water splitting and refractory organic pollutants removal are highlighted to offer guidelines for better development in photocatalysis. Particularly, no relative reports in previous studies were documented in CO2 reduction as well as heavy metals and air pollutants removal, thus this review presented as a considerable research value. Challenges in the construction of high-performance BiOX-based photocatalytic systems are also discussed. With the exponential growth of studies on BiOX photocatalytic nanomaterials, this review provides unique and comprehensive perspectives to design BiOX-based photocatalytic systems with superior visible light photocatalytic activity. The knowledge of both the merits and demerits of BiOX photocatalysts are updated and provided as a reference.
Collapse
Affiliation(s)
- Yang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
49
|
Zhu Z, Han Y, Chen C, Ding Z, Long J, Hou Y. Reduced Graphene Oxide-Cadmium Sulfide Nanorods Decorated with Silver Nanoparticles for Efficient Photocatalytic Reduction Carbon Dioxide Under Visible Light. ChemCatChem 2018. [DOI: 10.1002/cctc.201701573] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zezhou Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 P.R. China
| | - Ying Han
- State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 P.R. China
| | - Caiping Chen
- State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 P.R. China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 P.R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 P.R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment; College of Chemistry; Fuzhou University; Fuzhou 350002 P.R. China
| |
Collapse
|
50
|
Shi C, Dong X, Wang X, Ma H, Zhang X. Ag nanoparticles deposited on oxygen-vacancy-containing BiVO 4 for enhanced near-infrared photocatalytic activity. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62990-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|