1
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
2
|
Tang S, Liu Z, Zhang J, Li B, Wang B. Copper-Catalyzed C4-selective Carboxylation of Pyridines with CO 2 via Pyridylphosphonium Salts. Angew Chem Int Ed Engl 2024; 63:e202318572. [PMID: 38308092 DOI: 10.1002/anie.202318572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Pyridine motifs are widespread pharmacophores in many drugs. Installing various substituents through pyridine C-H bond functionalization is significant for new drug design and discovery. Developments of late-stage functionalization reactions enrich the strategies for selective functionalization of pyridines. However, late-stage C-H carboxylation of pyridines is a long-standing challenge, especially selectively carboxylation with CO2 on pyridine motifs. Herein, we describe a practical method for C4-H carboxylation of pyridines via one-pot C-H phosphination and copper-catalyzed carboxylation of the resulted phosphonium salts with CO2 . The reaction is conducted under mild conditions and compatible with multiple active groups and several pyridine drugs, providing diverse valuable isonicotinic acid compounds, demonstrating the application potential of this strategy.
Collapse
Affiliation(s)
- Shibiao Tang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Zezhao Liu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Jiakai Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
- State Key Laboratory of Organometallic Chemistry, Institution Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Site-Selective Electrochemical C-H Carboxylation of Arenes with CO 2. Angew Chem Int Ed Engl 2023; 62:e202214710. [PMID: 36382417 DOI: 10.1002/anie.202214710] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Herein, a direct, metal-free, and site-selective electrochemical C-H carboxylation of arenes by reductive activation using CO2 as the economic and abundant carboxylic source was reported. The electrocarboxylation was carried out in an operationally simple manner with high chemo- and regioselectivity, setting the stage for the challenging site-selective C-H carboxylation of unactivated (hetero)arenes. The robust nature of the electrochemical strategy was reflected by a broad scope of substrates with excellent atom economy and unique selectivity. Notably, the direct and selective C-H carboxylation of various challenging arenes worked well in this approach, including electron-deficient naphthalenes, pyridines, simple phenyl derivatives, and substituted quinolines. The method benefits from being externally catalyst-free, metal-free and base-free, which makes it extremely attractive for potential applications.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
4
|
Felten S, He CQ, Weisel M, Shevlin M, Emmert MH. Accessing Diverse Azole Carboxylic Acid Building Blocks via Mild C–H Carboxylation: Parallel, One-Pot Amide Couplings and Machine-Learning-Guided Substrate Scope Design. J Am Chem Soc 2022; 144:23115-23126. [DOI: 10.1021/jacs.2c10557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephanie Felten
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cyndi Qixin He
- Computational and Structural Chemistry, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mark Weisel
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Marion H. Emmert
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Tang S, Zhao X, Yang L, Li B, Wang B. Copper‐Catalyzed Carboxylation of Aryl Thianthrenium Salts with CO
2. Angew Chem Int Ed Engl 2022; 61:e202212975. [DOI: 10.1002/anie.202212975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Shibiao Tang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Xiaobo Zhao
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Lidong Yang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
6
|
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| |
Collapse
|
7
|
Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Challenges and recent advancements in the transformation of CO 2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chem Soc Rev 2022; 51:9371-9423. [DOI: 10.1039/d1cs00921d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of carbon dioxide (CO2) into valuable organic carboxylic acids is essential for maintaining sustainability. In this review, such CO2 thermo-, photo- and electrochemical transformations under 3d-transition metal catalysis are described from 2017 until 2022.
Collapse
Affiliation(s)
- Robin Cauwenbergh
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Vishakha Goyal
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Maiti
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502 285, Telangana, India
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
8
|
Pei C, Zong J, Li B, Wang B. Ni‐Catalyzed Direct Carboxylation of Aryl C−H Bonds in Benzamides with CO
2. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Jiarui Zong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| |
Collapse
|
9
|
Affiliation(s)
- Youwen Xu
- Independent Consultant/Contractor 3900 Ford Road, Unit 18O Philadelphia PA USA
| | - Wenchao Qu
- Departments of Psychiatry and Chemistry Stony Brook University New York NY USA
| |
Collapse
|
10
|
Pedersen SS, Donslund AS, Mikkelsen JH, Bakholm OS, Papp F, Jensen KB, Gustafsson MBF, Skrydstrup T. A Nickel(II)-Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry 2021; 27:7114-7123. [PMID: 33452676 DOI: 10.1002/chem.202005261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/15/2022]
Abstract
A series of pharmaceutically relevant small molecules and biopharmaceuticals bearing aliphatic carboxamides have been successfully labeled with carbon-13. Key to the success of this novel carbon isotope labeling technique is the observation that 13 C-labeled NiII -acyl complexes, formed from a 13 CO insertion step with NiII -alkyl intermediates, rapidly react in less than one minute with 2,2'-dipyridyl disulfide to quantitatively form the corresponding 2-pyridyl thioesters. Either the use of 13 C-SilaCOgen or 13 C-COgen allows for the stoichiometric addition of isotopically labeled carbon monoxide. Subsequent one-pot acylation of a series of structurally diverse amines provides the desired 13 C-labeled carboxamides in good yields. A single electron transfer pathway is proposed between the NiII -acyl complexes and the disulfide providing a reactive NiIII -acyl sulfide intermediate, which rapidly undergoes reductive elimination to the desired thioester. By further optimization of the reaction parameters, reaction times down to only 11 min were identified, opening up the possibility of exploring this chemistry for carbon-11 isotope labeling. Finally, this isotope labeling strategy could be adapted to the synthesis of 13 C-labeled liraglutide and insulin degludec, representing two antidiabetic drugs.
Collapse
Affiliation(s)
- Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jesper H Mikkelsen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Oskar S Bakholm
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Florian Papp
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kim B Jensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Magnus B F Gustafsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
11
|
Liu C. Theoretical research on the direct carboxylation of benzene with CO
2
catalyzed by different carbene‐CuOH compounds. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cong Liu
- Research and Development Center ShanDong GuoBang Pharmaceutical Co., Ltd. Weifang Shandong China
| |
Collapse
|
12
|
Pei C, Zong J, Han S, Li B, Wang B. Ni-Catalyzed Direct Carboxylation of an Unactivated C-H Bond with CO 2. Org Lett 2020; 22:6897-6902. [PMID: 32812433 DOI: 10.1021/acs.orglett.0c02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transition-metal-catalyzed direct carboxylation of an unactivated C-H bond is rarely reported, and no example of catalysis using abundant and cheap nickel has been reported. In this work, the first Ni-catalyzed direct carboxylation of an unactivated C-H bond under an atmospheric pressure of CO2 is reported. This method affords moderate to high carboxylation yields of various methyl carboxylates under mild conditions. Preliminary mechanistic studies reveal that a Ni(0)-Ni(II)-Ni(I) catalytic cycle may be involved in this reaction.
Collapse
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiarui Zong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Shanglin Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
13
|
Duffy IR, Vasdev N, Dahl K. Copper(I)-Mediated 11C-Carboxylation of (Hetero)arylstannanes. ACS OMEGA 2020; 5:8242-8250. [PMID: 32309734 PMCID: PMC7161067 DOI: 10.1021/acsomega.0c00524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
A novel copper-mediated carboxylation strategy of aryl- and heteroaryl-stannanes is described. The method serves as a mild (i.e., 1 atm) carboxylation method using stable carbon dioxide and is transferable as a radiosynthetic approach for carbon-11-labeled aromatic and heteroaromatic carboxylic acids using sub-stoichiometric quantities of [11C]CO2. The methodology was applied to the radiosynthesis of the retinoid X receptor agonist, [11C]bexarotene, with a decay-corrected radiochemical yield of 32 ± 5% and molar activity of 38 ± 23 GBq/μmol (n = 3).
Collapse
Affiliation(s)
- Ian R. Duffy
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Neil Vasdev
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
- Department
of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Kenneth Dahl
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| |
Collapse
|
14
|
A general 11C-labeling approach enabled by fluoride-mediated desilylation of organosilanes. Nat Commun 2020; 11:1736. [PMID: 32269227 PMCID: PMC7142131 DOI: 10.1038/s41467-020-15556-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Carbon-11 (11C) is one of the most ideal positron emitters for labeling bioactive molecules for molecular imaging studies. The lack of convenient and fast incorporation methods to introduce 11C into organic molecules often hampers the use of this radioisotope. Here, a fluoride-mediated desilylation (FMDS) 11C-labeling approach is reported. This method relies on thermodynamically favored Si-F bond formation to generate a carbanion, therefore enabling the highly efficient and speedy incorporation of [11C]CO2 and [11C]CH3I into molecules with diversified structures. It provides facile and rapid access to 11C-labeled compounds with carbon-11 attached at various hybridized carbons as well as oxygen, sulfur and nitrogen atoms with broad functional group tolerance. The exemplified syntheses of several biologically and clinically important radiotracers illustrates the potentials of this methodology. Convenient and fast methods to introduce 11C into organic molecules are of great help for molecular imaging studies. Here, the authors developed an efficient incorporation of [11C]CO2 and [11C]CH3I into molecules via a fluoride-mediated desilylation process.
Collapse
|
15
|
Affiliation(s)
- Hong-Ru Li
- College of Pharmacy, Nankai University, Tianjin 300353, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Tortajada A, Duan Y, Sahoo B, Cong F, Toupalas G, Sallustrau A, Loreau O, Audisio D, Martin R. Catalytic Decarboxylation/Carboxylation Platform for Accessing Isotopically Labeled Carboxylic Acids. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01921] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andreu Tortajada
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Basudev Sahoo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Fei Cong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Georgios Toupalas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antoine Sallustrau
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Olivier Loreau
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Davide Audisio
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
17
|
Lv X, Zhang X, Sa R, Huang F, Lu G. Computational exploration of substrate and ligand effects in nickel-catalyzed C–Si bond carboxylation with CO 2. Org Chem Front 2019. [DOI: 10.1039/c9qo00854c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ring strain of substrates and steric hindrance of NHC ligands are the key factors affecting the reactivity of CO2 insertion into sila-nickelacycles.
Collapse
Affiliation(s)
- Xiangying Lv
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Xiaotian Zhang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Rongjian Sa
- Institute of Oceanography
- Ocean college
- Minjiang University
- Fuzhou
- China
| | - Fang Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan
- China
| | - Gang Lu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
18
|
Biswas IH, Biswas S, Islam MS, Riyajuddin S, Sarkar P, Ghosh K, Islam SM. Catalytic synthesis of benzimidazoles and organic carbamates using a polymer supported zinc catalyst through CO2 fixation. NEW J CHEM 2019. [DOI: 10.1039/c9nj03015h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Zinc metal is attached to the organically modified polystyrene and the obtained catalyst is well characterized. The catalyst is very efficient for the formation of benzimidazoles and organic carbamates through carbon dioxide fixation.
Collapse
Affiliation(s)
| | - Surajit Biswas
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | - Md Sarikul Islam
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | | | - Priyanka Sarkar
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | | | - Sk Manirul Islam
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| |
Collapse
|
19
|
Bazzi S, Le Duc G, Schulz E, Gosmini C, Mellah M. CO2 activation by electrogenerated divalent samarium for aryl halide carboxylation. Org Biomol Chem 2019; 17:8546-8550. [DOI: 10.1039/c9ob01752f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first combination of samarium and electrochemistry towards the effective reduction of CO2 for the synthesis of benzoic acids from aryl halides.
Collapse
Affiliation(s)
- Sakna Bazzi
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182)
- Equipe Catalyse Moléculaire Univ. Paris Sud
- CNRS
- 91405 Orsay
- France
| | - Gaëtan Le Duc
- LCM
- CNRS
- Ecole polytechnique
- Institut Polytechnique de Paris
- 91228 Palaiseau
| | - Emmanuelle Schulz
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182)
- Equipe Catalyse Moléculaire Univ. Paris Sud
- CNRS
- 91405 Orsay
- France
| | - Corinne Gosmini
- LCM
- CNRS
- Ecole polytechnique
- Institut Polytechnique de Paris
- 91228 Palaiseau
| | - Mohamed Mellah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182)
- Equipe Catalyse Moléculaire Univ. Paris Sud
- CNRS
- 91405 Orsay
- France
| |
Collapse
|
20
|
Han YL, Zhao BY, Jiang KY, Yan HM, Zhang ZX, Yang WJ, Guo Z, Li YR. Mechanistic Insights into the Ni-Catalyzed Reductive Carboxylation of C-O Bonds in Aromatic Esters with CO 2 : Understanding Remarkable Ligand and Traceless-Directing-Group Effects. Chem Asian J 2018; 13:1570-1581. [PMID: 29774983 DOI: 10.1002/asia.201800257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/01/2018] [Indexed: 12/20/2022]
Abstract
The mechanism of the Ni0 -catalyzed reductive carboxylation reaction of C(sp2 )-O and C(sp3 )-O bonds in aromatic esters with CO2 to access valuable carboxylic acids was comprehensively studied by using DFT calculations. Computational results revealed that this transformation was composed of several key steps: C-O bond cleavage, reductive elimination, and/or CO2 insertion. Of these steps, C-O bond cleavage was found to be rate-determining, and it occurred through either oxidative addition to form a NiII intermediate, or a radical pathway that involved a bimetallic species to generate two NiI species through homolytic dissociation of the C-O bond. DFT calculations revealed that the oxidative addition step was preferred in the reductive carboxylation reactions of C(sp2 )-O and C(sp3 )-O bonds in substrates with extended π systems. In contrast, oxidative addition was highly disfavored when traceless directing groups were involved in the reductive coupling of substrates without extended π systems. In such cases, the presence of traceless directing groups allowed for docking of a second Ni0 catalyst, and the reactions proceed through a bimetallic radical pathway, rather than through concerted oxidative addition, to afford two NiI species both kinetically and thermodynamically. These theoretical mechanistic insights into the reductive carboxylation reactions of C-O bonds were also employed to investigate several experimentally observed phenomena, including ligand-dependent reactivity and site-selectivity.
Collapse
Affiliation(s)
- Yan-Li Han
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Bing-Yuan Zhao
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Kun-Yao Jiang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Hui-Min Yan
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Zhu-Xia Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Wen-Jing Yang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Zhen Guo
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| | - Yan-Rong Li
- Department of Earth Sciences and Engineering, Taiyuan University of Technology, Shanxi, 030024, P. R. China
| |
Collapse
|
21
|
Fisher MJ, McMurray L, Lu S, Morse CL, Liow JS, Zoghbi SS, Kowalski A, Tye GL, Innis RB, Aigbirhio FI, Pike VW. [Carboxyl- 11 C]Labelling of Four High-Affinity cPLA2α Inhibitors and Their Evaluation as Radioligands in Mice by Positron Emission Tomography. ChemMedChem 2018; 13:138-146. [PMID: 29232493 DOI: 10.1002/cmdc.201700697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Indexed: 01/23/2023]
Abstract
Cytosolic phospholipase A2α (cPLA2α) may play a critical role in neuropsychiatric and neurodegenerative disorders associated with oxidative stress and neuroinflammation. An effective PET radioligand for imaging cPLA2α in living brain might prove useful for biomedical research, especially on neuroinflammation. We selected four high-affinity (IC50 2.1-12 nm) indole-5-carboxylic acid-based inhibitors of cPLA2α, namely 3-isobutyryl-1-(2-oxo-3-(4-phenoxyphenoxy)propyl)-1H-indole-5-carboxylic acid (1); 3-acetyl-1-(2-oxo-3-(4-(4-(trifluoromethyl)phenoxy)phenoxy)propyl)-1H-indole-5-carboxylic acid (2); 3-(3-methyl-1,2,4-oxadiazol-5-yl)-1-(2-oxo-3-(4-phenoxyphenoxy)propyl)-1H-indole-5-carboxylic acid (3); and 3-(3-methyl-1,2,4-oxadiazol-5-yl)-1-(3-(4-octylphenoxy)-2-oxopropyl)-1H-indole-5-carboxylic acid (4), for labelling in carboxyl position with carbon-11 (t1/2 =20.4 min) to provide candidate PET radioligands for imaging brain cPLA2α. Compounds [11 C]1-4 were obtained for intravenous injection in adequate overall yields (1.1-5.5 %) from cyclotron-produced [11 C]carbon dioxide and with moderate molar activities (70-141 GBq μmol-1 ) through the use of Pd0 -mediated [11 C]carbon monoxide insertion on iodo precursors. Measured logD7.4 values were within a narrow moderate range (1.9-2.4). After intravenous injection of [11 C]1-4 in mice, radioactivity uptakes in brain peaked at low values (≤0.8 SUV) and decreased by about 90 % over 15 min. Pretreatments of the mice with high doses of the corresponding non-radioactive ligands did not alter brain time-activity curves. Brain uptakes of radioactivity after administration of [11 C]1 to wild-type and P-gp/BCRP dual knock-out mice were similar (peak 0.4 vs. 0.5 SUV), indicating that [11 C]1 and others in this structural class, are not substrates for efflux transporters.
Collapse
Affiliation(s)
- Martin J Fisher
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Lindsay McMurray
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Aneta Kowalski
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Franklin I Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Xu P, Wang F, Wei TQ, Yin L, Wang SY, Ji SJ. Palladium-Catalyzed Incorporation of Two C1 Building Blocks: The Reaction of Atmospheric CO 2 and Isocyanides with 2-Iodoanilines Leading to the Synthesis of Quinazoline-2,4(1H,3H)-diones. Org Lett 2017; 19:4484-4487. [PMID: 28763234 DOI: 10.1021/acs.orglett.7b01877] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Pd-catalyzed insertion and cycloaddition of CO2 and isocyanide into 2-iodoanilines under atmospheric pressure has been developed and affords quinazoline-2,4(1H,3H)-diones through the formation of new C-C, C-O, and C-N bonds under mild conditions. This reaction provides a new and practical method not only for the construction of quinazoline-2,4(1H,3H)-diones but also for the efficient utilization of carbon dioxide.
Collapse
Affiliation(s)
- Pei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Tian-Qi Wei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Ling Yin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, China
| |
Collapse
|
23
|
Lv X, Wu YB, Lu G. Computational exploration of ligand effects in copper-catalyzed boracarboxylation of styrene with CO2. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01637a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CO2 insertion is promoted by copper catalysts with more electron-rich monophosphine or less sterically hindered NHC ligands.
Collapse
Affiliation(s)
- Xiangying Lv
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Gang Lu
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
24
|
Lv X, Zhang L, Sun B, Li Z, Wu YB, Lu G. Computational studies on the Rh-catalyzed carboxylation of a C(sp2)–H bond using CO2. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01163f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CO2 insertion is facilitated by the critical effects of a Lewis acid and an agostic interaction.
Collapse
Affiliation(s)
- Xiangying Lv
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Linhui Zhang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Beibei Sun
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Zhi Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Gang Lu
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|