1
|
Sivakumar S, Kulkarni A. Toward an ab Initio Description of Adsorbate Surface Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:13238-13248. [PMID: 39140094 PMCID: PMC11317978 DOI: 10.1021/acs.jpcc.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
The advent of machine learning potentials (MLPs) provides a unique opportunity to access simulation time scales and to directly compute physicochemical properties that are typically intractable using density functional theory (DFT). In this study, we use an active learning curriculum to train a generalizable MLP using the DeepMD-kit architecture. By using sufficiently long MLP-based molecular dynamics (MD) simulations, which provide DFT-level accuracy, we investigate the diffusion of key surface-bound adsorbates on a Ag(111) facet. Detailed analysis of the MLP/MD-calculated diffusivities sheds light on the potential shortcomings of using DFT-based nudged elastic band to estimate surface diffusion barriers. More generally, while this study is focused on a specific system, we anticipate that the underlying workflows and the resulting models can be extended to other adsorbates and other materials in the future.
Collapse
Affiliation(s)
- Saurabh Sivakumar
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
2
|
Vodyankina OV. Silver Catalysts for the Partial Oxidation of Alcohols. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Karatok M, Sensoy MG, Vovk EI, Ustunel H, Toffoli D, Ozensoy E. Formaldehyde Selectivity in Methanol Partial Oxidation on Silver: Effect of Reactive Oxygen Species, Surface Reconstruction, and Stability of Intermediates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mustafa Karatok
- Department of Chemistry, Bilkent University, 06800 Bilkent, Ankara, Turkey
| | | | - Evgeny I. Vovk
- Department of Chemistry, Bilkent University, 06800 Bilkent, Ankara, Turkey
| | - Hande Ustunel
- Department of Physics, Middle East Technical University, Dumlupinar Bulvari 1, 06800 Ankara, Turkey
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universita degli Studi di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Emrah Ozensoy
- Department of Chemistry, Bilkent University, 06800 Bilkent, Ankara, Turkey
- UNAM—National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
4
|
Zhou B, Huang E, Almeida R, Gurses S, Ungar A, Zetterberg J, Kulkarni A, Kronawitter CX, Osborn DL, Hansen N, Frank JH. Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Zhou
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Erxiong Huang
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Raybel Almeida
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Sadi Gurses
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexander Ungar
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Johan Zetterberg
- Division of Combustion Physics, Lund University, Lund SE-221 00, Sweden
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X. Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Jonathan H. Frank
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
5
|
Methanol Partial Oxidation Over Shaped Silver Nanoparticles Derived from Cubic and Octahedral Ag2O Nanocrystals. Catal Letters 2019. [DOI: 10.1007/s10562-019-02850-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Morphology and Activity of Electrolytic Silver Catalyst for Partial Oxidation of Methanol to Formaldehyde Under Different Exposures and Oxidation Reactions. Top Catal 2019. [DOI: 10.1007/s11244-019-01159-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Motagamwala AH, Ball MR, Dumesic JA. Microkinetic Analysis and Scaling Relations for Catalyst Design. Annu Rev Chem Biomol Eng 2018; 9:413-450. [DOI: 10.1146/annurev-chembioeng-060817-084103] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microkinetic analysis plays an important role in catalyst design because it provides insight into the fundamental surface chemistry that controls catalyst performance. In this review, we summarize the development of microkinetic models and the inclusion of scaling relationships in these models. We discuss the importance of achieving stoichiometric and thermodynamic consistency in developing microkinetic models. We also outline how analysis of the maximum rates of elementary steps can be used to determine which transition states and adsorbed intermediates are kinetically significant, allowing the derivation of general reaction kinetics rate expressions in terms of changes in binding energies of the relevant transition states and intermediates. Through these analyses, we present how to predict optimal surface coverages and binding energies of adsorbed species, as well as the extent of potential rate improvement for a catalytic system. For systems in which the extent of potential rate improvement is small because of limitations imposed by scaling relations, different approaches, including the addition of promoters and formation of catalysts containing multiple functionalities, can be used to break the scaling relations and obtain further rate enhancement.
Collapse
Affiliation(s)
- Ali Hussain Motagamwala
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA;, ,
| | - Madelyn R. Ball
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA;, ,
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA;, ,
| |
Collapse
|
8
|
Huang W, Sun G, Cao T. Surface chemistry of group IB metals and related oxides. Chem Soc Rev 2017; 46:1977-2000. [DOI: 10.1039/c6cs00828c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic surface chemistry of IB metals are reviewed with an attempt to bridge model catalysts and powder catalysts.
Collapse
Affiliation(s)
- Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale
- Key Laboratory of Materials for Energy Conversion of Chinese Academy of Sciences
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| | - Guanghui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale
- Key Laboratory of Materials for Energy Conversion of Chinese Academy of Sciences
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| | - Tian Cao
- Hefei National Laboratory for Physical Sciences at the Microscale
- Key Laboratory of Materials for Energy Conversion of Chinese Academy of Sciences
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|