1
|
Name LL, Toma SH, Pereira Nogueira H, Avanzi LH, Pereira RDS, Peffi Ferreira LF, Araki K, Cella R, Toyama MM. Phosphotungstic acid impregnated niobium coated superparamagnetic iron oxide nanoparticles as recyclable catalyst for selective isomerization of terpenes. RSC Adv 2021; 11:14203-14212. [PMID: 35423922 PMCID: PMC8697717 DOI: 10.1039/d1ra00012h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Conversion efficiency as high as 80-100% and 50% selectivity for camphene and limonene was achieved with low production of polymeric byproducts (18-28%), easy recovery with a magnet and reuse for up to five cycles maintaining similar activity and distribution of products, using a new magnetically recyclable catalyst based on niobium oxide coated on superparamagnetic iron oxide nanoparticles (SPION) impregnated with phosphotungstic acid (HPW). The catalyst was demonstrated to be effective in the selective conversion of alpha and beta-pinenes into valuable terpenes, under ultrasonic probe activation and with toluene as solvent. A unique synergic effect between the components generating more active and selective catalytic sites was demonstrated, indicating that the SPION covered with 30 wt% of Nb2O5 gives the best performance when impregnated with HPW as co-catalyst. The materials were fully characterized by XRD, EDX, XPS, TEM, BET, VSM and FTIR.
Collapse
Affiliation(s)
- Luccas Lossano Name
- Department of Chemistry Engineering FEI University 3972B - Assunção - São Bernardo do Campo São Paulo CEP 09850-901 Brazil
| | - Sergio Hiroshi Toma
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, IQUSP Av Lineu Prestes, 748 - Cidade Universitária CEP 05508-000 São Paulo Brazil marcosmakotoyama@gmail
| | - Helton Pereira Nogueira
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, IQUSP Av Lineu Prestes, 748 - Cidade Universitária CEP 05508-000 São Paulo Brazil marcosmakotoyama@gmail
| | - Luis Humberto Avanzi
- Department of Physics FEI University 3972B - Assunção - São Bernardo do Campo São Paulo CEP 09850-901 Brazil
| | - Rafael Dos Santos Pereira
- Department of Physics, Universidade Federal do ABC, Centro de Ciências Naturais e Humanas Avenida dos Estados, 5001 - Bloco A - Torre 3 - Lab. L704-3 - 09210580 - Bangu - Santo André SP Brazil
| | - Luis Fernando Peffi Ferreira
- Department of Chemistry Engineering FEI University 3972B - Assunção - São Bernardo do Campo São Paulo CEP 09850-901 Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, IQUSP Av Lineu Prestes, 748 - Cidade Universitária CEP 05508-000 São Paulo Brazil marcosmakotoyama@gmail
| | - Rodrigo Cella
- Department of Chemistry Engineering FEI University 3972B - Assunção - São Bernardo do Campo São Paulo CEP 09850-901 Brazil
| | - Marcos Makoto Toyama
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, IQUSP Av Lineu Prestes, 748 - Cidade Universitária CEP 05508-000 São Paulo Brazil marcosmakotoyama@gmail
| |
Collapse
|
2
|
Wu PF, Xue Q, Wang TY, Li SJ, Li GP, Xue GL. A PW 12/Ag functionalized mesoporous silica-coated magnetic Fe 3O 4 core-shell composite as an efficient and recyclable photocatalyst. Dalton Trans 2021; 50:578-586. [PMID: 33464251 DOI: 10.1039/d0dt03882b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel composite, Fe3O4@SiO2@mSiO2-PW12/Ag, was successfully prepared by in situ loading Ag nanoparticles (Ag NPs) on the surface of grafted phosphotungstate (denoted as PW12) Fe3O4@SiO2@mSiO2via a photoreduction deposition method. PW12 not only acts as a reducing agent and stabilizer for Ag NPs but also as a bridge to link Ag NPs and the SiO2 shell in the loading process. Its activity toward the photodegradation of methyl orange (MO) and photoreduction of Cr2O72- anions was evaluated. Experimental results showed that Fe3O4@SiO2@mSiO2-PW12/Ag with 5.3 wt% Ag loading and 18.65 wt% of PW12 exhibits the highest photocatalytic efficacy, and complete degradation of MO and 91.2% photoreduction of Cr(vi) were realized under simulated sunlight for 75 min, respectively. The enhanced catalytic activities of the composite are due to its high specific surface area, the synergistic effect among the components and the formation of a heterojunction of PW12/Ag. The possible enhanced photocatalytic mechanism is proposed. The catalyst is durable and can be easily recovered using a magnet for recycling without a significant loss of catalytic activity.
Collapse
Affiliation(s)
- Pan-Feng Wu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, 18 Dianzi Road, Yanta District, Xi'an, 710065, P. R. China. and Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, P. R. China.
| | - Qi Xue
- Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Tian-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, P. R. China.
| | - Shan-Jian Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, 18 Dianzi Road, Yanta District, Xi'an, 710065, P. R. China.
| | - Gao-Peng Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Gang-Lin Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, P. R. China.
| |
Collapse
|
3
|
Wu P, Xue Q, Liu J, Wang T, Feng C, Liu B, Hu H, Xue G. In Situ Depositing Ag NPs on PDA/SiW
11
V Co‐encapsulated Fe
3
O
4
@TiO
2
Magnetic Microspheres as Highly Efficient and Durable Visible‐light‐driven Photocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Panfeng Wu
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Yanta District Xi'an 710065 P. R. China
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Qi Xue
- Xi'an Modern Chemistry Research Institute Xi'an 710065 P. R. China
| | - Jiquan Liu
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Tianyu Wang
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Caiting Feng
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Bin Liu
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Huaiming Hu
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| | - Ganglin Xue
- College of Chemistry & Materials Science Northwest University Guodu Chang'an District Xi'an 710127 P. R. China
| |
Collapse
|
4
|
Feng C, Li Q, Wu P, Liu B, Hu H, Xue G. Phosphotungstic Acid Supported on Magnetic Mesoporous Tantalum Pentoxide Microspheres: Efficient Heterogeneous Catalysts for Acetalization of Benzaldehyde with Ethylene Glycol. Catal Letters 2020. [DOI: 10.1007/s10562-019-03029-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zuo B, Li W, Wu X, Wang S, Deng Q, Huang M. Recent Advances in the Synthesis, Surface Modifications and Applications of Core‐Shell Magnetic Mesoporous Silica Nanospheres. Chem Asian J 2020; 15:1248-1265. [DOI: 10.1002/asia.202000045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Zuo
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Wanfang Li
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Xiaoqiang Wu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Shige Wang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Qinyue Deng
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Mingxian Huang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| |
Collapse
|
6
|
Hydrogen Peroxide as a Green Oxidant for the Selective Catalytic Oxidation of Benzylic and Heterocyclic Alcohols in Different Media: An Overview. CHEMISTRY 2020. [DOI: 10.3390/chemistry2010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Among a plethora of known and established oxidant in organic chemistry, hydrogen peroxide stands in a special position. It is commercially and inexpensively available, highly effective, selective, and more importantly it is compatible with current environmental concerns, dictated by principles of green chemistry. Several chemicals or their intermediates that are important in our daily life such as pharmaceuticals, flavors, fragrances, etc. are products of oxidation of alcohols. In this review, we introduce hydrogen peroxide as an effective, selective, green and privileged oxidant for the catalyzed oxidation of primary and secondary benzylic and heterocyclic alcohols to corresponding carbonyl compounds in different media such as aqueous media, under solvent-free conditions, various organic solvent, and dual-phase system.
Collapse
|
7
|
Shaker M, Elhamifar D. Core–shell structured magnetic mesoporous silica supported Schiff-base/Pd: an efficacious and reusable nanocatalyst. NEW J CHEM 2020. [DOI: 10.1039/c9nj06250e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Preparation, characterization and catalytic application of a novel magnetic ordered mesoporous silica supported Schiff-base/Pd (Fe3O4@MCM-41-SB/Pd) are developed.
Collapse
|
8
|
Ni L, Li H, Xu H, Shen C, Liu R, Xie J, Zhang F, Chen C, Zhao H, Zuo T, Diao G. Self-Assembled Supramolecular Polyoxometalate Hybrid Architecture as a Multifunctional Oxidation Catalyst. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38708-38718. [PMID: 31545027 DOI: 10.1021/acsami.9b12531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyoxometalates (POMs) are widely applied as tuneable and versatile catalysts for a variety of oxidation reactions in an aqueous/organic two-phase system. However, the practical applications of POMs-based biphasic catalysis are hampered by low space-time yields and mass-transport limitation between two layers due to extremely low solubility of the organic reactants in the aqueous phase. Here, we first introduced β-cyclodextrin (β-CD) as an inverse phase transfer agent and a supramolecular nanoreactor to construct a supramolecular POM inorganic-organic hybrid framework (KCl4)Na7[(β-CD)3(SiW12O40)]·9H2O {3CD@SiW12} for various oxidation catalyses. In contrast to free CD, Keggin [SiW12O40]4- catalysts, and their mixture, the {3CD@SiW12} catalyst, efficiently catalyze oxidation reactions of alcohol, alkene, and thiophene. A comprehensive strategy of experimental, crystallographic, and density functional theory (DFT) calculations elucidates that the catalytic pathway involved three combined aspects of supramolecular recognition, phase transfer property, and POM catalysis. The strategic combination of supramolecular characteristic and POM-based catalysts to fabricate supramolecular POM hybrid materials opens up new economic and green tuning options, thus paving the way to informed catalyst design.
Collapse
|
9
|
Yang Y, Xu B, He J, Shi J, Yu L, Fan Y. Magnetically separable mesoporous silica‐supported palladium nanoparticle‐catalyzed selective hydrogenation of naphthalene to tetralin. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5204] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yonghui Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
- School of Chemical EngineeringAnhui University of Science and Technology Huainan 232001 China
| | - Bolian Xu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
- Nanjing University‐Yangzhou Chemistry and Chemical Engineering Institute Yangzhou 211400 China
| | - Jie He
- School of Chemical EngineeringAnhui University of Science and Technology Huainan 232001 China
| | - Jianjun Shi
- School of Chemical EngineeringAnhui University of Science and Technology Huainan 232001 China
| | - Lei Yu
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
- Nanjing University‐Yangzhou Chemistry and Chemical Engineering Institute Yangzhou 211400 China
| |
Collapse
|
10
|
Karimpour T, Safaei E, Karimi B. A supported manganese complex with amine-bis(phenol) ligand for catalytic benzylic C(sp3)–H bond oxidation. RSC Adv 2019; 9:14343-14351. [PMID: 35519312 PMCID: PMC9064044 DOI: 10.1039/c9ra02284h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
With regards to the importance of direct and selective activation of C–H bonds in oxidation processes, we develop a supported manganese amine bis(phenol) ligand complex as a novel catalyst with the aim of obtaining valuable products such as carboxylic acids and ketones that have an important role in life, industry and academic laboratories. We further analyzed and characterized the catalyst using the HRTEM, SEM, FTIR, TGA, VSM, XPS, XRD, AAS, and elemental analysis (CHN) techniques. Also, the catalytic evaluation of our system for direct oxidation of benzylic C–H bonds under solvent-free condition demonstrated that the heterogeneous form of our catalyst has high efficiency in comparison with homogeneous ones due to more stability of the supported complex. Furthermore, the structural and morphological stability of our efficient recyclable catalytic system has been investigated and all of the data proved that the complex was firmly anchored to the magnetite nanoparticles. An environmentally friendly and efficient catalyst containing three interesting parts, Mn, the amine bis(phenolate) ligand (H3LGDC) and the magnetic nanoparticles for benzylic C–H bond oxidation.![]()
Collapse
Affiliation(s)
- Touraj Karimpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Elham Safaei
- Department of Chemistry
- College of Sciences
- Shiraz University Shiraz
- Iran
| | - Babak Karimi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
11
|
Darvishi K, Amani K, Rezaei M. Preparation, characterization and heterogeneous catalytic applications of GO/Fe3
O4
/HPW nanocomposite in chemoselective and green oxidation of alcohols with aqueous H2
O2. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kamran Darvishi
- Department of Chemistry, Faculty of Sciences; University of Kurdistan; P.O. Box 6617715175 Sanandaj Iran
| | - Kamal Amani
- Department of Chemistry, Faculty of Sciences; University of Kurdistan; P.O. Box 6617715175 Sanandaj Iran
| | - Manuchehr Rezaei
- Department of Chemistry, Faculty of Sciences; University of Kurdistan; P.O. Box 6617715175 Sanandaj Iran
| |
Collapse
|
12
|
Hao P, Zhang M, Zhang W, Tang Z, Luo N, Tan R, Yin D. Polyoxometalate-based Gemini ionic catalysts for selective oxidation of benzyl alcohol with hydrogen peroxide in water. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01191e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxometalate-based Gemini ionic hybrids with inherent phase transfer capability are highly efficient and recyclable catalysts in the selective oxidation of alcohols with H2O2 in water.
Collapse
Affiliation(s)
- Pengbo Hao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Mingjie Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Zhiyang Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Ni Luo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Rong Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Donghong Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- Hunan Normal University
- Changsha 410081
- P. R. China
| |
Collapse
|
13
|
Karimpour T, Safaei E, Karimi B, Lee YI. Iron(III) Amine Bis(phenolate) Complex Immobilized on Silica-Coated Magnetic Nanoparticles: A Highly Efficient Catalyst for the Oxidation of Alcohols and Sulfides. ChemCatChem 2017. [DOI: 10.1002/cctc.201701217] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Touraj Karimpour
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P.O. Box 45137-66731, Gava Zang Zanjan Iran
| | - Elham Safaei
- Department of Chemistry; College of Sciences; Shiraz University; Shiraz 71454 Iran
| | - Babak Karimi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P.O. Box 45137-66731, Gava Zang Zanjan Iran
| | - Yong-Ill Lee
- Department of Chemistry; Changwon National University; Changwon 641-773 South Korea
| |
Collapse
|
14
|
First-Row-Transition Ion Metals(II)-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols. Catalysts 2017. [DOI: 10.3390/catal7110335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|