1
|
Wang L, Wang Y, Zhou Y. Bimetallic MOF-derived three-dimensional nanoflowers PdCoO x as peroxidase mimic activity for determining total antioxidant capacity. Food Chem 2024; 457:140120. [PMID: 38936126 DOI: 10.1016/j.foodchem.2024.140120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Bimetallic MOF derivatives have shown excellent performance as nano-enzymes in the field of catalysis. Herein, PdCo oxide nanoflowers with three-dimensional flower were prepared by a simple pyrolysis method on a precursor of bimetallic PdCo-MOF. PdCoOx showed excellent peroxidase mimic activity, which could significantly promote the oxidation of TMB by H2O2. Compared with CoOx, the peroxidase mimic activity of the optimized PdCoOx-300 increased by 2.41-fold. PdCoOx-300 has high affinity for TMB and H2O2 with Km values of 0.16 mM and 2.11 mM, which are only 57.03% and 36.87% of HRP, respectively. The highly specific peroxidase mimic activity is conducive to the sensitive detection of H2O2, glucose and ascorbic acid with limit of detection of 10, 100 and 10 nM, respectively. Furthermore, the total antioxidant capacity in the actual beverage samples was conducted, which showed good anti-interference ability and recovery rate.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yanbin Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
2
|
Wu X, Liu X, He Y, Lei L, Hao S, Zhang X. A ternary PdNiMo alloy as a bifunctional nanocatalyst for the oxygen reduction reaction and hydrogen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mo0.2Pd3Ni/NC shows superior electrochemical performances for both ORR and HER due to the charge redistribution among Ni, Pd, and Mo, tuning the electronic structure of Pd.
Collapse
Affiliation(s)
- Xiao Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xiangnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
3
|
Xiao F, Wang YC, Wu ZP, Chen G, Yang F, Zhu S, Siddharth K, Kong Z, Lu A, Li JC, Zhong CJ, Zhou ZY, Shao M. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006292. [PMID: 33749011 DOI: 10.1002/adma.202006292] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Indexed: 05/18/2023]
Abstract
The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low-cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Guangyu Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kumar Siddharth
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jin-Cheng Li
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
4
|
Mosleh I, Abbaspourrad A. Peptide-directed Pd-decorated Au and PdAu nanocatalysts for degradation of nitrite in water. RSC Adv 2021; 11:32615-32621. [PMID: 35493599 PMCID: PMC9042164 DOI: 10.1039/d1ra05304c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (PdxAu100−x) alloy NPs exhibiting high nitrite degradation efficiency. Pd-on-Au NPs with 20% to 300% surface coverage (sc%) of Au showed catalytic activity commensurate with sc%. Additionally, the catalytic activity of PdxAu100−x alloy NPs varied based on palladium composition (x = 6–59). The maximum nitrite removal efficiency of Pd-on-Au and PdxAu100−x alloy NPs was obtained at sc 100% and x = 59, respectively. The synthesized peptide-directed Pd-on-Au catalysts showed an increase in nitrite reduction three and a half times better than monometallic Pd and two and a half times better than PdxAu100−x NPs under comparable conditions. Furthermore, peptide-directed NPs showed high activity after five reuse cycles. Pd-on-Au NPs with more available activated palladium atoms showed high selectivity (98%) toward nitrogen gas production over ammonia. In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (PdxAu100−x) alloy NPs exhibiting high nitrite degradation efficiency.![]()
Collapse
Affiliation(s)
- Imann Mosleh
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Oxygen Reduction Reaction and Hydrogen Evolution Reaction Catalyzed by Pd–Ru Nanoparticles Encapsulated in Porous Carbon Nanosheets. Catalysts 2018. [DOI: 10.3390/catal8080329] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Developing bi-functional electrocatalysts for both oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is crucial for enhancing the energy transfer efficiency of metal–air batteries and fuel cells, as well as producing hydrogen with a high purity. Herein, a series of Pd–Ru alloyed nanoparticles encapsulated in porous carbon nanosheets (CNs) were synthesized and employed as a bifunctional electrocatalyst for both ORR and HER. The TEM measurements showed that Pd–Ru nanoparticles, with a size of approximately 1–5 nm, were uniformly dispersed on the carbon nanosheets. The crystal and electronic structures of the PdxRu100−x/CNs series were revealed by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The as-prepared samples exhibited effective ORR activity in alkaline media and excellent HER activity in both alkaline and acid solutions. The Pd50Ru50/CNs sample displayed the best activity and stability among the series, which is comparable and superior to that of commercial 10% Pd/C. For ORR, the Pd50Ru50/CNs catalyst exhibited an onset potential of 0.903 V vs. RHE (Reversible Hydrogen Electrode) and 11.4% decrease of the current density after 30,000 s of continuous operation in stability test. For HER, the Pd50Ru50/CNs catalyst displayed an overpotential of 37.3 mV and 45.1 mV at 10 mA cm−2 in 0.1 M KOH and 0.5 M H2SO4, respectively. The strategy for encapsulating bimetallic alloys within porous carbon materials is promising for fabricating sustainable energy toward electrocatalysts with multiple electrocatalytic activities for energy related applications.
Collapse
|