1
|
Shi L, Zhang N, Xue Z, Luo G. Mechanistic Insights into Rare-Earth-Catalyzed Alternating Copolymerization through C-H Polyaddition of Functionalized Organic Compounds to Unconjugated Dienes. Inorg Chem 2024; 63:8079-8091. [PMID: 38663005 DOI: 10.1021/acs.inorgchem.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Density functional theory (DFT) calculations have been conducted to elucidate the detailed mechanisms of yttrium-catalyzed C-H polyaddition of 1,4-dimethoxybenzene (DMB) to 1,4-divinylbenzene (DVB). It was computationally determined that DMB not only serves as a substrate but also performs a crucial role as a ligand, stabilizing the catalytically active species and promoting alkene insertion. Side pathways involving Cβ-H activation and C═C continuous insertion were excluded due to steric and electronic factors, respectively, explaining why the reaction occurred efficiently and selectively to give perfectly alternating DMB-DVB polymers. Interestingly, the theoretical prediction of the reactivity of N,N-dimethyl-1,4-phenylenediamine and 2,2'-biethyl-4,4'-bipyridine reveals significant differences in the coordination effects of these substrates, leading to distinct mechanisms, primarily influenced by their steric effects. These findings shed new light on the previously overlooked role of substrate ligand effects in rare-earth-catalyzed step-growth copolymerization reactions.
Collapse
Affiliation(s)
- Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
2
|
Wang S, Zhu C, Ning L, Li D, Feng X, Dong S. Regioselective C-H alkylation of anisoles with olefins by cationic imidazolin-2-iminato scandium(iii) alkyl complexes. Chem Sci 2023; 14:3132-3139. [PMID: 36970095 PMCID: PMC10033784 DOI: 10.1039/d2sc06725k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
A new type of rare-earth alkyl complexes supported by monoanionic imidazolin-2-iminato ligands were synthesised and structurally characterised by X-ray diffraction and NMR analyses. The utility of these imidazolin-2-iminato rare-earth alkyl complexes in organic synthesis was demonstrated by their performance in highly regioselective C-H alkylation of anisoles with olefins. With as low as 0.5 mol% catalyst loading, various anisole derivatives without ortho-substitution or 2-methyl substituted anisoles reacted with several alkenes under mild conditions, producing the corresponding ortho-Csp2-H and benzylic Csp3-H alkylation products in high yield (56 examples, 16-99% yields). Control experiments revealed that rare-earth ions, ancillary imidazolin-2-iminato ligands, and basic ligands were crucial for the above transformations. Based on deuterium-labelling experiments, reaction kinetic studies, and theoretical calculations, a possible catalytic cycle was provided to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Shiyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Chenhao Zhu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Dawei Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
3
|
Wu P, Cao F, Zhou Y, Xue Z, Zhang N, Shi L, Luo G. Substrate Facilitating Roles in Rare-Earth-Catalyzed C-H Alkenylation of Pyridines with Allenes: Mechanism and Origins of Regio- and Stereoselectivity. Inorg Chem 2022; 61:17330-17341. [PMID: 36259978 DOI: 10.1021/acs.inorgchem.2c02953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although considerable progress has been achieved in C-H functionalization by cationic rare-earth alkyl complexes, the potential facilitating roles of heteroatom-containing substrates during the catalytic cycle remain highly underestimated. Herein, theoretical studies on the model reaction of C(sp2)-H addition of pyridines to allenes by scandium catalyst were carefully carried out to reveal the detailed mechanism. A coordinating pyridine substrate as a ligand can effectively stabilize some key structures. An obvious facilitating role delivered by the coordinating pyridine was found for allene insertion, while the pyridine-free mechanism prefers to occur for C(sp2)-H activation processes. Importantly, the elusive role of heteroatom-containing substrates was systematically revealed for the C-H activation event by designing a metal/ligand combination of catalysts and substrates. We found that the pyridyl C(sp2)-H activation would be switched to the pyridine-coordinated mechanism in the cases of the designed Y and La catalysts. To date, this is the first time to realize the potential substrate-facilitating role in cationic rare-earth-catalyzed C-H activation processes. Moreover, theoretical predictions show that similar switchable mechanisms also work for other types of C-H bonds and other heteroatom-involved substrates by fine-adjusting the steric surroundings of catalysts. The two C-H activation mechanisms are mainly the result of the delicate balance between electronic and steric factors. In general, the catalytic system with less steric hindrance prefers to undergo the substrate-coordinated mechanism. In contrast, the substrate-free mechanism is favorable due to steric repulsion. These results are helpful for us to better understand the variant mechanisms in rare-earth-catalyzed C-H functionalization at the atomistic level and may help guide the rational design of new catalytic reactions. In addition, the origins of the regio- and stereoselectivity were discussed through geometric parameters and distortion/interaction analysis.
Collapse
Affiliation(s)
- Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
4
|
Babkin AI, Kissel AA, Ob’edkov AM, Trifonov AA. Dehydrocoupling of alkoxyarenes with aromatic hydrosilanes catalyzed by scandium aminobenzyl complexes. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Palmese M, Pérez-Torrente JJ, Passarelli V. Cyclometalated iridium complexes based on monodentate aminophosphanes. Dalton Trans 2022; 51:12334-12351. [PMID: 35904083 DOI: 10.1039/d2dt02081e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodentate aminophosphanes HNP [NH(4-tolyl)PPh2] and SiMe3NP [SiMe3N(4-tolyl)PPh2] react with [Ir(μ-Cl)(cod)]2 affording tetra- or pentacoordinate complexes of formula [IrCl(L)n(cod)] (L = HNP, n = 1, 2; L = SiMe3NP, n = 1). The reaction of [IrCl(SiMe3NP)(cod)] with carbon monoxide smoothly renders [Ir(CO)3(SiMe3NP)2][IrCl2(CO)2]. The reaction of HNP or SiMe3NP with [Ir(CH3CN)2(cod)][PF6] yields the cyclometalated iridium(III)-hydride derivatives [IrH{κ2C,P-NR(4-C6H3CH3)PPh2}(cod)(CH3CN)][PF6] (R = H, SiMe3) as a result of the intramolecular oxidative addition of the tolyl C2-H bond to iridium. The straighforward formation of [IrH{κ2C,P-SiMe3N(4-C6H3CH3)PPh2}(cod)(CH3CN)]+ was observed when the reaction was monitored by NMR spectroscopy at 233 K, whereas a more complex reaction sequence was observed in the formation of [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(cod)(CH3CN)]+, including the formation of [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(HNP)(cod)]+ and [Ir(cod)(HNP)2]+. The "mixed" complex [IrH{κ2C,P-SiMe3N(4-C6H3CH3)PPh2}(HNP)(cod)]+ was obtained upon reaction of [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(cod)(CH3CN)][PF6] with SiMe3NP at 233 K. Finally, the reaction of [Ir(CH3CN)2(coe)2][PF6] with SiMe3NP or HNP resulted in the formation of [Ir(CH3CN)2(SiMe3NP)2][PF6] and [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(HNP)2(CH3CN)][PF6], respectively. Both the OC-6-35 and the OC-6-52 isomers of [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(HNP)2(CH3CN)]+ - featuring facial and meridional dispositions of the phosphorus atoms, respectively - were isolated depending on the reaction solvent. Several compounds described herein catalyse the dehydrogenation of formic acid in DMF, [IrCl(HNP)2(cod)] being the most active, with TOF1 min of about 2300 h-1 (5 mol% catalyst, 50 mol% sodium formate, DMF, 80 °C).
Collapse
Affiliation(s)
- Marco Palmese
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| | - Jesús J Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| |
Collapse
|
6
|
Zhou Y, Wu P, Cao F, Shi L, Zhang N, Xue Z, Luo G. Mechanistic insights into rare-earth-catalysed C-H alkylation of sulfides: sulfide facilitating alkene insertion and beyond. RSC Adv 2022; 12:13593-13599. [PMID: 35530397 PMCID: PMC9069833 DOI: 10.1039/d2ra02180c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
The catalytic C-H alkylation with alkenes is of much interest and importance, as it offers a 100% atom efficient route for C-C bond construction. In the past decade, great progress in rare-earth catalysed C-H alkylation of various heteroatom-containing substrates with alkenes has been made. However, whether or how a heteroatom-containing substrate would influence the coordination or insertion of an alkene at the catalyst metal center remained elusive. In this work, the mechanism of Sc-catalysed C-H alkylation of sulfides with alkenes and dienes has been carefully examined by DFT calculations, which revealed that the alkene insertion could proceed via a sulfide-facilitated mechanism. It has been found that a similar mechanism may also work for the C-H alkylation of other heteroatom-containing substrates such as pyridine and anisole. Moreover, the substrate-facilitated alkene insertion mechanism and a substrate-free one could be switched by fine-tuning the sterics of catalysts and substrates. This work provides new insights into the role of heteroatom-containing substrates in alkene-insertion-involved reactions, and may help guide designing new catalysis systems.
Collapse
Affiliation(s)
- Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| |
Collapse
|
7
|
Tanaka K, Hattori H, Yabe R, Nishimura T. Ir-Catalyzed cyclization of α,ω-dienes with an N-methyl group via two C-H activation steps. Chem Commun (Camb) 2022; 58:5371-5374. [PMID: 35411896 DOI: 10.1039/d2cc01275h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium-catalyzed sp3 C-H alkylation of an N-methyl group with 1,5- and 1,6-dienes proceeded to give five- and six-membered carbocyclic compounds, respectively, in high yields. The reaction involves intermolecular alkylation of the N-methyl group with a vinyl moiety and subsequent intramolecular cyclization at the β-position of the initially formed alkylated intermediate. The reaction using a chiral bidentate phosphine ligand enabled the asymmetric synthesis of the cyclic compounds.
Collapse
Affiliation(s)
- Katsumasa Tanaka
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | - Hiroshi Hattori
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | - Ryota Yabe
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| |
Collapse
|
8
|
Lin H, Li Y, Wang J, Zhang M, Jiang T, Li J, Chen Y. Ortho
‐C–H addition of 2‐substituted pyridines with alkenes and imines enabled by mono(phosphinoamido)‐rare earth complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hailong Lin
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology (TUST) Tianjin China
| | - Yongrui Li
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology (TUST) Tianjin China
| | - Jinyu Wang
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology (TUST) Tianjin China
| | - Mei Zhang
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology (TUST) Tianjin China
| | - Tao Jiang
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology (TUST) Tianjin China
| | - Jing Li
- College of Food Science and Engineering Tianjin University of Science and Technology (TUST) Tianjin China
| | - Yanhui Chen
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology (TUST) Tianjin China
| |
Collapse
|
9
|
Salt metathesis reactions of LnCl3 (Sc, Y vs. Sm, Yb) with potassium diphenylmethanide {[2,2′-(4-MeC6H3NMe2)2CH]K(THF)}2. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Luo YL, Liu YF, Guan BT. Alkyl lithium-catalyzed benzylic C–H bond addition of alkyl pyridines to α-alkenes. Org Biomol Chem 2020; 18:6622-6626. [DOI: 10.1039/d0ob01499k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alkyl lithium catalyst successfully achieved the benzylic C–H bond addition of alkyl pyridines to α-alkenes, and displayed distinct selectivity from those of transition metal catalysts.
Collapse
Affiliation(s)
- Yan-Long Luo
- State Key Laboratory and Institute of Element-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 30071
- China
| | - Yu-Feng Liu
- State Key Laboratory and Institute of Element-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 30071
- China
| | - Bing-Tao Guan
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| |
Collapse
|
11
|
Ye P, Shao Y, Zhang F, Zou J, Ye X, Chen J. Rare‐Earth‐Metal‐Catalyzed Synthesis of Azaindolines and Naphthyridines via C−H Cyclization of Functionalized Pyridines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pengqing Ye
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Yinlin Shao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
- Institute of New Materials & Industrial TechnologyWenzhou University Wenzhou 325035 People's Republic of China
| | - Fangjun Zhang
- School of Pharmaceutical SciencesWenzhou Medical University Wenzhou 325035 People's Republic of China
| | - Jinxuan Zou
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Xuanzeng Ye
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Jiuxi Chen
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
12
|
Edelmann FT, Farnaby JH, Jaroschik F, Wilson B. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Qin G, Cheng J. Thorium(iv) trialkyl complexes of non-carbocyclic ligands as highly active isoprene polymerisation catalysts. Dalton Trans 2019; 48:11706-11714. [PMID: 31274141 DOI: 10.1039/c9dt01617a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of mono-anionic non-carbocyclic ligands, including bidentate benzamidinate [PhC(NDipp)2] (Dipp = C6H3-2,6-iPr2), iminophosphinamide [Ph2P(NDipp)2] and phosphinoamide [Ph2PNDipp], and tridentate hydrotris(3,5-dimethyl-1-pyrazolyl)borate (TpMe2) were used to stabilize the corresponding thorium(iv) trialkyl complexes [PhC(NDipp)2]Th(CH2SiMe3)3 (1), [Ph2P(NDipp)2]Th(CH2SiMe3)3 (2), [Ph2P(NDipp)]Th(p-CH2-C6H4-Me)3 (3) and (TpMe2)Th(CH2SiMe3)3 (4), which were characterized by NMR spectroscopy and single-crystal X-ray analysis. Complexes 1-4 in combination with [Ph3C][B(C6F5)4] and AliBu3 form non-Cp-ligated actinide catalyst systems to show high activity and high cis-1,4-selectivity (89.9%) or trans-1,4-selectivity (91.4%) for the polymerization of isoprene. The reaction rate and selectivity of complexes 1 and 2 were controlled by the crowded space around the thorium centre, corroborated by the kinetics of the polymerization and the steric maps.
Collapse
Affiliation(s)
- Guorui Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, 130022 China.
| | | |
Collapse
|
14
|
Chen P, Hao Y, Wang X, Yuan D, Yao Y, Ackermann L. Directing-Group-Free C7-Alkylations of N-Alkylindoles Mediated by Cationic Zirconium Complexes: Role of Brønsted Acid for Catalytic Manifold. Chemistry 2019; 25:7292-7297. [PMID: 30893504 DOI: 10.1002/chem.201901268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 01/05/2023]
Abstract
Highly position selective alkylations of N-alkylindoles at C7-positions have been enabled by cationic zirconium complexes. The strategy provides a straightforward access to install alkyl groups at C7-positions of indoles without a complex directing group. Mechanistic studies provided support for the importance of Brønsted acids in the catalytic manifold.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yanhong Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xinxin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universiät Götingen, Tammannstraße 2, 37077, Götingen, Germany
| |
Collapse
|
15
|
Tang B, Hu X, Liu C, Jiang T, Alam F, Chen Y. Tandem Cyclization/Hydroarylation of α,ω-Dienes Triggered by Scandium-Catalyzed C–H Activation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Tang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Xiaoyan Hu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Chunli Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Tao Jiang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Fakhre Alam
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Yanhui Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin 300457, P. R. China
| |
Collapse
|
16
|
Yang Y, Nishiura M, Wang H, Hou Z. Metal-catalyzed C H activation for polymer synthesis and functionalization. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1478] [Impact Index Per Article: 211.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
18
|
Zhou G, Luo G, Kang X, Hou Z, Luo Y. Origin of Product Selectivity in Yttrium-Catalyzed Benzylic C–H Alkylations of Alkylpyridines with Olefins: A DFT Study. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guangli Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, People’s Republic of China
| | - Zhaomin Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
- Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|