1
|
Bilyachenko AN, Khrustalev VN, Arteev IS, Shul'pina LS, Ikonnikov NS, Kirillova MV, Shubina ES, Kirillov AM, Kozlov YN, Lobanov NN, Ragimov KG, Sun D. Cu 12-Methylsilsesquioxane Cage Decorated with Cu(dppe) 2 Moieties for Mild Oxidative Functionalization of Alkanes. Inorg Chem 2024; 63:20404-20414. [PMID: 39402967 DOI: 10.1021/acs.inorgchem.4c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We report a high nuclear (Cu14) complex synthesized via the self-assembly of copper-methylsilsesquioxane induced by the complexation with 1,2-bis(diphenylphosphino)ethane (dppe). The structure includes two cationic CuI(dppe)2 moieties and an anionic silsesquioxane cage of an unprecedented CuII12 structural type. The Cu12 cage fragment exhibits a unique (i) combination of Si4-cyclic/Si2-acyclic silsesquioxane ligands and (ii) encapsulation of two different chloride and carbonate species. This complex acts as a promising precatalyst in the mild oxidation and carboxylation of light alkanes to produce alkyl hydroperoxides, alcohols, ketones, or carboxylic acids. The present study widens the family of copper-methylsilsesquioxane clusters with prospective use in oxidation catalysis.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Ivan S Arteev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Lidia S Shul'pina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Nikolay S Ikonnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Yuriy N Kozlov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina 4, Moscow 119991, Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi Pereulok, Dom 36, Moscow 117997, Russia
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Karim G Ragimov
- Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan
| | - Di Sun
- Shandong University, Department of Chemistry and Chemical Engineering, Shanda South Road 27, 250100 Jinan, China
| |
Collapse
|
2
|
Bilyachenko AN, Arteev IS, Khrustalev VN, Shul'pina LS, Korlyukov AA, Ikonnikov NS, Shubina ES, Kozlov YN, Reis Conceição N, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Cage-like Cu 5Cs 4-Phenylsilsesquioxanes: Synthesis, Supramolecular Structures, and Catalytic Activity. Inorg Chem 2023; 62:13573-13586. [PMID: 37561666 DOI: 10.1021/acs.inorgchem.3c01989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A small family of nonanuclear Cu5Cs4-based phenylsilsesquioxanes 1-2 were prepared by a convenient self-assembly approach and characterized by X-ray diffraction studies. The compounds 1 and 2 show some unprecedented structural features such as the presence of a [Ph14Si14O28]14- silsesquioxane ligand and a CuII5CsI4 nuclearity in which the metal cations occupy unusual positions within the cluster. Copper ions are "wrapped" into a silsesquioxane matrix, while cesium ions are located in external positions. This resulted in cesium-involved aggregation of coordination polymer structures. Both compounds 1 and 2 realize specific metallocene (cesium-phenyl) linkage between neighboring cages. Compound 2 is evaluated as a catalyst in the Baeyer-Villiger (B-V) oxidation of cyclohexanone and tandem cyclohexane oxidation/B-V oxidation of cyclohexanone with m-chloroperoxybenzoic acid (mCPBA) as an oxidant, in an aqueous acetonitrile medium, and HNO3 as the promoter. A quantitative yield of ε-caprolactone was achieved under conventional heating at 50 °C for 4 h or MW irradiation for 30 min (for cyclohexanone as substrate); 17 and 19% yields of lactone upon MW irradiation at 80 °C for 30 min and heating at 50 °C for 4 h, respectively (for cyclohexane as a substrate), were achieved. Complex 2 was evaluated as a catalyst for the oxidation of alkanes to alkyl hydroperoxides and alcohols to ketones with peroxides at 60 °C in acetonitrile. The maximum yield of cyclohexane oxidation products was 30%. Complex 2 exhibits high activity in the oxidation of alcohols.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
| | - Ivan S Arteev
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Lidia S Shul'pina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Alexander A Korlyukov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Nikolay S Ikonnikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, Moscow 119991, Russia
| | - Yuriy N Kozlov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia
- Plekhanov Russian University of Economics, Stremyannyi Pereulok 36, Moscow 117997, Russia
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Baku Az 1148, Azerbaijan
| | - Armando J L Pombeiro
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, Moscow 117198, Russia
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| |
Collapse
|
3
|
Bilyachenko AN, Arteev IS, Khrustalev VN, Zueva AY, Shul’pina LS, Shubina ES, Ikonnikov NS, Shul’pin GB. Cagelike Octacopper Methylsilsesquioxanes: Self-Assembly in the Focus of Alkaline Metal Ion Influence-Synthesis, Structure, and Catalytic Activity. Molecules 2023; 28:1211. [PMID: 36770877 PMCID: PMC9921387 DOI: 10.3390/molecules28031211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
A family of unusual octacopper cage methylsilsesquioxanes 1-4 were prepared and characterized. Features of their cagelike (prismatic) structure were established using X-ray diffraction studies. Effects of distortion of prismatic cages 1-4 due to variation of (i) additional alkaline metal ions (K, Rb, or Cs), (ii) combination of solvating ligands, and (iii) nature of encapsulating species were found. Opportunities for the design of supramolecular 1D extended structures were found. These opportunities are based on (i) formate linkers between copper centers (in the case of Cu8K2-based compound 2) or (ii) crown ether-like contacts between cesium ions and siloxane cycles (in the case of Cu8Cs2-based compound 4). Cu8Cs2-complex 4 was evaluated in the catalysis of alkanes and alcohols. Complex 4 exhibits high catalytic activity. The yield of cyclohexane oxidation products is 35%. The presence of nitric acid is necessary as a co-catalyst. The oxidation of alcohols with the participation of complex 4 as a catalyst and tert-butyl hydroperoxide as an oxidizer also proceeds in high yields of up to 98%.
Collapse
Affiliation(s)
- Alexey N. Bilyachenko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
| | - Ivan S. Arteev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Victor N. Khrustalev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anna Y. Zueva
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Lidia S. Shul’pina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
| | - Elena S. Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
| | - Nikolay S. Ikonnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
| | - Georgiy B. Shul’pin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina 4, 119991 Moscow, Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi Pereulok, Dom 36, 117997 Moscow, Russia
| |
Collapse
|
4
|
Hybrid Silsesquioxane/Benzoate Cu 7-Complexes: Synthesis, Unique Cage Structure, and Catalytic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238505. [PMID: 36500598 PMCID: PMC9739484 DOI: 10.3390/molecules27238505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
A series of phenylsilsesquioxane-benzoate heptacopper complexes 1-3 were synthesized and characterized by X-ray crystallography. Two parallel routes of toluene spontaneous oxidation (into benzyl alcohol and benzoate) assisted the formation of the cagelike structure 1. A unique multi-ligation of copper ions (from (i) silsesquioxane, (ii) benzoate, (iii) benzyl alcohol, (iv) pyridine, (v) dimethyl-formamide and (vi) water ligands) was found in 1. Directed self-assembly using benzoic acid as a reactant afforded complexes 2-3 with the same main structural features as for 1, namely heptanuclear core coordinated by (i) two distorted pentameric cyclic silsesquioxane and (ii) four benzoate ligands, but featuring other solvate surroundings. Complex 3 was evaluated as a catalyst for the oxidation of alkanes to alkyl hydroperoxides and alcohols to ketones with hydrogen peroxide and tert-butyl hydroperoxide, respectively, at 50 °C in acetonitrile. The maximum yield of cyclohexane oxidation products as high as 32% was attained. The oxidation reaction results in a mixture of cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone. Upon the addition of triphenylphosphine, the cyclohexyl hydroperoxide is completely converted to cyclohexanol. The specific regio- and chemoselectivity in the oxidation of n-heptane and methylcyclohexane, respectively, indicate the involvement of of hydroxyl radicals. Complex 3 exhibits a high activity in the oxidation of alcohols.
Collapse
|
5
|
A Novel Family of Cage-like (CuLi, CuNa, CuK)-phenylsilsesquioxane Complexes with 8-hydroxyquinoline Ligands: Synthesis, Structure, and Catalytic Activity. Molecules 2022; 27:molecules27196205. [PMID: 36234735 PMCID: PMC9571593 DOI: 10.3390/molecules27196205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The first examples of metallasilsesquioxane complexes, including ligands of the 8-hydroxyquinoline family 1–9, were synthesized, and their structures were established by single crystal X-ray diffraction using synchrotron radiation. Compounds 1–9 tend to form a type of sandwich-like cage of Cu4M2 nuclearity (M = Li, Na, K). Each complex includes two cisoid pentameric silsesquioxane ligands and two 8-hydroxyquinoline ligands. The latter coordinates the copper ions and corresponding alkaline metal ions (via the deprotonated oxygen site). A characteristic (size) of the alkaline metal ion and a variation of characteristics of nitrogen ligands (8-hydroxyquinoline vs. 5-chloro-8-hydroxyquinoline vs. 5,7-dibromo-8-hydroxyquinoline vs. 5,7-diiodo-8-hydroxyquinoline) are highly influential for the formation of the supramolecular structure of the complexes 3a, 5, and 7–9. The Cu6Na2-based compound 2 exhibits high catalytic activity towards the oxidation of (i) hydrocarbons by H2O2 activated with HNO3, and (ii) alcohols by tert-butyl hydroperoxide. Studies of kinetics and their selectivity has led us to conclude that it is the hydroxyl radicals that play a crucial role in this process.
Collapse
|
6
|
Bilyachenko AN, Gutsul EI, Khrustalev VN, Astakhov GS, Zueva AY, Zubavichus YV, Kirillova MV, Shul'pina LS, Ikonnikov NS, Dorovatovskii PV, Shubina ES, Kirillov AM, Shul'pin GB. Acetone Factor in the Design of Cu 4-, Cu 6-, and Cu 9-Based Cage Coppersilsesquioxanes: Synthesis, Structural Features, and Catalytic Functionalization of Alkanes. Inorg Chem 2022; 61:14800-14814. [PMID: 36059209 DOI: 10.1021/acs.inorgchem.2c02217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study describes a new feature in the self-assembly of cagelike copperphenylsilsesquioxanes: the strong influence of acetone solvates on cage structure formation. By this simple approach, a series of novel tetra-, hexa-, or nonacoppersilsesquioxanes were isolated and characterized. In addition, several new complexes of Cu4 or Cu6 nuclearity bearing additional nitrogen-based ligands (ethylenediamine, 2,2'-bipyridine, phenanthroline, bathophenanthroline, or neocuproine) were produced. Single-crystal X-ray diffraction studies established molecular architectures of all of the synthesized products. Several coppersilsesquioxanes represent a novel feature of cagelike metallasilsesquioxane (CLMS) in terms of molecular topology. A Cu4-silsesquioxane complex with ethylenediamine (En) ligands was isolated via the unprecedented self-assembly of a partly condensed framework of silsesquioxane ligands, followed by the formation of a sandwich-like cage. Two prismatic Cu6 complexes represent the different conformers─regular and elliptical hexagonal prisms, "cylinders", determined by the different orientations of the coordinated acetone ligands ("shape-switch effect"). A heterometallic Cu4Na4-sandwich-like derivative represents the first example of a metallasilsesquioxane complex with diacetone alcohol ligands formed in situ due to acetone condensation reaction. As a selected example, the compound [(Ph6Si6O11)2Cu4En2]·(acetone)2 was explored in homogeneous oxidation catalysis. It catalyzes the oxidation of alkanes to alkyl hydroperoxides with hydrogen peroxide and the oxidation of alcohols to ketones with tert-butyl hydroperoxide. Radical species take part in the oxidation of alkanes. Besides, [(Ph6Si6O11)2Cu4En2]·(acetone)2 catalyzes the mild oxidative functionalization of gaseous alkanes (ethane, propane, n-butane, and i-butane). Two different model reactions were investigated: (1) the oxidation of gaseous alkanes with hydrogen peroxide to give a mixture of oxygenates (alcohols, ketones, or aldehydes) and (2) the carboxylation of Cn gaseous alkanes with carbon monoxide, water, and potassium peroxodisulfate to give Cn+1 carboxylic acids (main products), along with the corresponding Cn oxygenates. For these reactions, the effects of acid promoter, reaction time, and substrate scope were explored. As expected for free-radical-type reactions, the alkane reactivity follows the trend C2H6 < C3H8 < n-C4H10 < i-C4H10. The highest total product yields were observed in the carboxylation of i-butane (up to 61% based on i-C4H10). The product yields and catalyst turnover numbers (TONs) are remarkable, given an inertness of gaseous alkanes and very mild reaction conditions applied (low pressures, 50-60 °C temperatures).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Evgenii I Gutsul
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Grigorii S Astakhov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Anna Y Zueva
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RAS, Nikolskii prosp., 1, Koltsovo 630559, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Lidia S Shul'pina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Nikolay S Ikonnikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia.,Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| |
Collapse
|
7
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Astakhov GS, Levitsky MM, Zubavichus YV, Khrustalev VN, Titov AA, Dorovatovskii PV, Smol'yakov AF, Shubina ES, Kirillova MV, Kirillov AM, Bilyachenko AN. Cu 6- and Cu 8-Cage Sil- and Germsesquioxanes: Synthetic and Structural Features, Oxidative Rearrangements, and Catalytic Activity. Inorg Chem 2021; 60:8062-8074. [PMID: 33979518 DOI: 10.1021/acs.inorgchem.1c00586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reports intriguing features in the self-assembly of cage copper(II) silsesquioxanes in the presence of air. Despite the wide variation of solvates used, a series of prismatic hexanuclear Cu6 cages (1-5) were assembled under mild conditions. In turn, syntheses at higher temperatures are accompanied by side reactions, leading to the oxidation of solvates (methanol, 1-butanol, and tetrahydrofuran). The oxidized solvent derivatives then specifically participate in the formation of copper silsesquioxane cages, allowing the isolation of several unusual Cu8-based (6 and 7) and Cu6-based (8) complexes. When 1,4-dioxane was applied as a reaction medium, deep rearrangements occurred (with a total elimination of silsesquioxane ligands), causing the formation of mononuclear copper(II) compounds bearing oxidized dioxane fragments (9 and 11) or a formate-driven 1D coordination polymer (10). Finally, a "directed" self-assembly of sil- and germsesquioxanes from copper acetate (or formate) resulted in the corresponding acetate (or formate) containing Cu6 cages (12 and 13) that were isolated in high yields. The structures of all of the products 1-13 were established by single-crystal X-ray diffraction, mainly based on the use of synchrotron radiation. Moreover, the catalytic activity of compounds 12 and 13 was evaluated toward the mild homogeneous oxidation of C5-C8 cycloalkanes with hydrogen peroxide to form a mixture of the corresponding cyclic alcohols and ketones.
Collapse
Affiliation(s)
- Grigorii S Astakhov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay Street 6, Moscow 117198, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Yan V Zubavichus
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences (SB RAS) Prosp. Akad., Lavrentieva 5, Novosibirsk 630090, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay Street 6, Moscow 117198, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), Leninsky Prospect 47, Moscow 119991, Russia
| | - Aleksei A Titov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Alexander F Smol'yakov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia.,Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| |
Collapse
|
9
|
Abstract
The review describes articles that provide data on the synthesis and study of the properties of catalysts for the oxidation of alkanes, olefins, and alcohols. These catalysts are polynuclear complexes of iron, copper, osmium, nickel, manganese, cobalt, vanadium. Such complexes for example are: [Fe2(HPTB)(m-OH)(NO3)2](NO3)2·CH3OH·2H2O, where HPTB-¼N,N,N0,N0-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane; complex [(PhSiO1,5)6]2[CuO]4[NaO0.5]4[dppmO2]2, where dppm-1,1-bis(diphenylphosphino)methane; (2,3-η-1,4-diphenylbut-2-en-1,4-dione)undecacarbonyl triangulotriosmium; phenylsilsesquioxane [(PhSiO1.5)10(CoO)5(NaOH)]; bi- and tri-nuclear oxidovanadium(V) complexes [{VO(OEt)(EtOH)}2(L2)] and [{VO(OMe)(H2O)}3(L3)]·2H2O (L2 = bis(2-hydroxybenzylidene)terephthalohydrazide and L3 = tris(2-hydroxybenzylidene)benzene-1,3,5-tricarbohydrazide); [Mn2L2O3][PF6]2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). For comparison, articles are introduced describing catalysts for the oxidation of alkanes and alcohols with peroxides, which are simple metal salts or mononuclear metal complexes. In many cases, polynuclear complexes exhibit higher activity compared to mononuclear complexes and exhibit increased regioselectivity, for example, in the oxidation of linear alkanes. The review contains a description of some of the mechanisms of catalytic reactions. Additionally presented are articles comparing the rates of oxidation of solvents and substrates under oxidizing conditions for various catalyst structures, which allows researchers to conclude about the nature of the oxidizing species. This review is focused on recent works, as well as review articles and own original studies of the authors.
Collapse
|
10
|
Liu YN, Hou JL, Wang Z, Gupta RK, Jagličić Z, Jagodič M, Wang WG, Tung CH, Sun D. An Octanuclear Cobalt Cluster Protected by Macrocyclic Ligand: In Situ Ligand-Transformation-Assisted Assembly and Single-Molecule Magnet Behavior. Inorg Chem 2020; 59:5683-5693. [DOI: 10.1021/acs.inorgchem.0c00449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ya-Nan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Jin-Le Hou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Rakesh Kumar Gupta
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Zvonko Jagličić
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jamova 2, Ljubljana 1000, Slovenia
| | - Marko Jagodič
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jamova 2, Ljubljana 1000, Slovenia
| | - Wen-Guang Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| |
Collapse
|
11
|
Metal Complexes Containing Redox-Active Ligands in Oxidation of Hydrocarbons and Alcohols: A Review. Catalysts 2019. [DOI: 10.3390/catal9121046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ligands are innocent when they allow oxidation states of the central atoms to be defined. A noninnocent (or redox) ligand is a ligand in a metal complex where the oxidation state is not clear. Dioxygen can be a noninnocent species, since it exists in two oxidation states, i.e., superoxide (O2−) and peroxide (O22−). This review is devoted to oxidations of C–H compounds (saturated and aromatic hydrocarbons) and alcohols with peroxides (hydrogen peroxide, tert-butyl hydroperoxide) catalyzed by complexes of transition and nontransition metals containing innocent and noninnocent ligands. In many cases, the oxidation is induced by hydroxyl radicals. The mechanisms of the formation of hydroxyl radicals from H2O2 under the action of transition (iron, copper, vanadium, rhenium, etc.) and nontransition (aluminum, gallium, bismuth, etc.) metal ions are discussed. It has been demonstrated that the participation of the second hydrogen peroxide molecule leads to the rapture of O–O bond, and, as a result, to the facilitation of hydroxyl radical generation. The oxidation of alkanes induced by hydroxyl radicals leads to the formation of relatively unstable alkyl hydroperoxides. The data on regioselectivity in alkane oxidation allowed us to identify an oxidizing species generated in the decomposition of hydrogen peroxide: (hydroxyl radical or another species). The values of the ratio-of-rate constants of the interaction between an oxidizing species and solvent acetonitrile or alkane gives either the kinetic support for the nature of the oxidizing species or establishes the mechanism of the induction of oxidation catalyzed by a concrete compound. In the case of a bulky catalyst molecule, the ratio of hydroxyl radical attack rates upon the acetonitrile molecule and alkane becomes higher. This can be expanded if we assume that the reactions of hydroxyl radicals occur in a cavity inside a voluminous catalyst molecule, where the ratio of the local concentrations of acetonitrile and alkane is higher than in the whole reaction volume. The works of the authors of this review in this field are described in more detail herein.
Collapse
|
12
|
Tsygankov AA, Makarova M, Afanasyev OI, Kashin AS, Naumkin AV, Loginov DA, Chusov D. Reductive Amidation without an External Hydrogen Source Using Rhodium on Carbon Matrix as a Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201901465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Alexey A. Tsygankov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
| | - Maria Makarova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
- Higher Chemical CollegeDmitry Mendeleev University of Chemical Technology of Russia Miusskaya sq. 9 Moscow 125047 Russia
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
| | - Alexey S. Kashin
- Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospekt 47 Moscow 119991 Russia
| | - Alexander V. Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
- Moscow Institute of Physics and TechnologyState University Institutskiy Pereulok 9 Dolgoprudny 141701 Russia
| | - Dmitry A. Loginov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. Moscow 119991 Russia
- G.V. Plekhanov Russian University of Economics 36 Stremyanny Per. Moscow 117997 Russia
| |
Collapse
|
13
|
Levitsky MM, Bilyachenko AN, Shubina ES, Long J, Guari Y, Larionova J. Magnetic cage-like metallasilsesquioxanes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
New Cu4Na4- and Cu5-Based Phenylsilsesquioxanes. Synthesis via Complexation with 1,10-Phenanthroline, Structures and High Catalytic Activity in Alkane Oxidations with Peroxides in Acetonitrile. Catalysts 2019. [DOI: 10.3390/catal9090701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Self-assembly of copper(II)phenylsilsesquioxane assisted by the use of 1,10-phenanthroline (phen) results in isolation of two unusual cage-like compounds: (PhSiO1,5)12(CuO)4(NaO0.5)4(phen)4 1 and (PhSiO1,5)6(PhSiO1,5)7(HO0.5)2(CuO)5(O0.25)2(phen)3 2. X-Ray diffraction study revealed extraordinaire molecular architectures of both products. Namely, complex 1 includes single cyclic (PhSiO1,5)12 silsesquioxane ligand. Four sodium ions of 1 are additionally ligated by 1,10-phenanthrolines. In turn, “sodium-less” complex 2 represents coordination of 1,10-phenanthrolines to copper ions. Two silsesquioxane ligands of 2 are: (i) noncondensed cubane of a rare Si6-type and (ii) unprecedented Si7-based ligand including two HOSiO1.5 fragments. These silanol units were formed due to removal of phenyl groups from silicon atoms, observed in mild conditions. The presence of phenanthroline ligands in products 1 and 2 favored the π–π stacking interactions between neighboring cages. Noticeable that in the case of 1 all four phenanthrolines participated in such supramolecular organization, unlike to complex 2 where one of the three phenanthrolines is not “supramolecularly active”. Complexes 1 and 2 were found to be very efficient precatalysts in oxidations with hydroperoxides. A new method for the determination of the participation of hydroxyl radicals has been developed.
Collapse
|
15
|
A Comparative Study of the Catalytic Behaviour of Alkoxy-1,3,5-Triazapentadiene Copper(II) Complexes in Cyclohexane Oxidation. INORGANICS 2019. [DOI: 10.3390/inorganics7070082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mononuclear copper complexes [Cu{NH=C(OR)NC(OR)=NH}2] with alkoxy-1,3,5-triazapentadiene ligands that have different substituents (R = Me (1), Et (2), nPr (3), iPr (4), CH2CH2OCH3 (5)) were prepared, characterized (including the single crystal X-ray analysis of 3) and studied as catalysts in the mild oxidation of alkanes with H2O2 as an oxidant, pyridine as a promoting agent and cyclohexane as a main model substrate. The complex 4 showed the highest activity with a yield of products up to 18.5% and turnover frequency (TOF) up to 41 h−1. Cyclohexyl hydroperoxide was the main reaction product in all cases. Selectivity parameters in the oxidation of substituted cyclohexanes and adamantane disclosed a dominant free radical reaction mechanism with hydroxyl radicals as C–H-attacking species. The main overoxidation product was 6-hydroxyhexanoic acid, suggesting the presence of a secondary reaction mechanism of a different type. All complexes undergo gradual alteration of their structures in acetonitrile solutions to produce catalytically-active intermediates, as evidenced by UV/Vis spectroscopy and kinetic studies. Complex 4, having tertiary C–H bonds in its iPr substituents, showed the fastest alteration rate, which can be significantly suppressed by using the CD3CN solvent instead of CH3CN one. The observed process was associated to an autocatalytic oxidation of the alkoxy-1,3,5-triazapentadiene ligand. The deuterated complex 4-d32 was prepared and showed higher stability under the same conditions. The complexes 1 and 4 showed different reactivity in the formation of H218O from 18O2 in acetonitrile solutions.
Collapse
|
16
|
Silicon and Germanium-Based Sesquioxanes as Versatile Building Blocks for Cage Metallacomplexes. A Review. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01567-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Palanquin-Like Cu4Na4 Silsesquioxane Synthesis (via Oxidation of 1,1-bis(Diphenylphosphino)methane), Structure and Catalytic Activity in Alkane or Alcohol Oxidation with Peroxides. Catalysts 2019. [DOI: 10.3390/catal9020154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The self-assembly synthesis of copper-sodium phenylsilsesquioxane in the presence of 1,1-bis(diphenylphosphino)methane (dppm) results in an unprecedented cage-like product: [(PhSiO1,5)6]2[CuO]4[NaO0.5]4[dppmO2]2 1. The most intriguing feature of the complex 1 is the presence of two oxidized dppm species that act as additional O-ligands for sodium ions. Two cyclic phenylsiloxanolate (PhSiO1,5)6 ligands coordinate in a sandwich manner with the copper(II)-containing layer of the cage. The structure of 1 was established by X-ray diffraction analysis. Complex 1 was shown to be a very good catalyst in the oxidation of alkanes and alcohols with hydrogen peroxide or tert-butyl hydroperoxide in acetonitrile solution. Thus, cyclohexane (CyH), was transformed into cyclohexyl hydroperoxide (CyOOH), which could be easily reduced by PPh3 to afford stable cyclohexanol with a yield of 26% (turnover number (TON) = 240) based on the starting cyclohexane. 1-Phenylethanol was oxidized by tert-butyl hydroperoxide to give acetophenone in an almost quantitative yield. The selectivity parameters of the oxidation of normal and branched alkanes led to the conclusion that the peroxides H2O2 and tert-BuOOH, under the action of compound (1), decompose to generate the radicals HO• and tert-BuO• which attack the C-H bonds of the substrate.
Collapse
|
18
|
Astakhov GS, Bilyachenko AN, Korlyukov AA, Levitsky MM, Shul'pina LS, Bantreil X, Lamaty F, Vologzhanina AV, Shubina ES, Dorovatovskii PV, Nesterov DS, Pombeiro AJL, Shul'pin GB. High-Cluster (Cu 9) Cage Silsesquioxanes: Synthesis, Structure, and Catalytic Activity. Inorg Chem 2018; 57:11524-11529. [PMID: 30160945 DOI: 10.1021/acs.inorgchem.8b01496] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unusual high-cluster (Cu9) cage phenylsilsesquioxanes were obtained via complexation of in situ CuII,Na-silsesquioxane species formed with phenanthroline and neocuproine. In the first case, phenanthroline, acting as "a silent ligand" (not participating in the composition of the final product), favors the formation of an unprecedented cagelike phenylsilsesquioxane of Cu9Na6 nuclearity, 1. In the second case, neocuproine ligands withdraws two Cu ions from the metallasilsesquioxane matrix, producing two cationic fragments Cu+(neocuproine)2. The remaining metallasilsesquioxane is rearranged into an anionic cage of Cu9Na4 nuclearity, finalizing the formation of a specific ionic complex, 2. The impressive molecular architecture of both types of complexes, e.g., the presence of different (cyclic/acyclic) types of silsesquioxane ligands, was established by single-crystal X-ray diffraction studies. Compound 1 was revealed to be highly active in the oxidative amidation of benzylic alcohol and the catalyst loading could be reduced down to 100 ppm of Cu. Catalytic studies of compound 1 demonstrated its high activity in hydroperoxidation of alkanes with H2O2 and oxidation of alcohols to ketones with tert-BuOOH.
Collapse
Affiliation(s)
- Grigorii S Astakhov
- Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov Strasse 28 , Moscow , Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Strasse 6 , Moscow , Russia
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov Strasse 28 , Moscow , Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Strasse 6 , Moscow , Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov Strasse 28 , Moscow , Russia.,Pirogov Russian National Research Medical University , Ostrovitianov Strasse 1 , Moscow , Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov Strasse 28 , Moscow , Russia
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov Strasse 28 , Moscow , Russia
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS , Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS , Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov Strasse 28 , Moscow , Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov Strasse 28 , Moscow , Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" , Akademika Kurchatova Place 1 , Moscow , Russia
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico , Universidade de Lisboa , Avenida Rovisco Pais , 1049-001 Lisboa , Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico , Universidade de Lisboa , Avenida Rovisco Pais , 1049-001 Lisboa , Portugal
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics , Russian Academy of Sciences , Ulitsa Kosygina, dom 4 , 119991 Moscow , Russia.,Plekhanov Russian University of Economics , Stremyannyi Pereulok, dom 36 , 117997 Moscow , Russia
| |
Collapse
|
19
|
Bilyachenko AN, Levitsky MM, Korlyukov AA, Khrustalev VN, Zubavichus YV, Shul'pina LS, Shubina ES, Vologzhanina AV, Shul'pin GB. Heptanuclear Cage CuII-Silsesquioxanes: Synthesis, Structure and Catalytic Activity. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexey N. Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
- Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklay Str. 6 117198 Moscow Russia
| | - Mikhail M. Levitsky
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
| | - Alexander A. Korlyukov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
- Pirogov Russian National Research Medical University; Ostrovitianov Str. 1 117997 Moscow Russia
| | - Victor N. Khrustalev
- Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklay Str. 6 117198 Moscow Russia
| | - Yan V. Zubavichus
- National Research Center “Kurchatov Institute”; Akademika Kurchatova Pl. 1 123182 Moscow Russia
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
| | - Elena S. Shubina
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
| | - Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics; Russian Academy of Sciences; ul. Kosygina 4 119991 Moscow Russia
- Plekhanov Russian University of Economics; Stremyannyi pereulok, dom 36 117997 Moscow Russia
| |
Collapse
|
20
|
Bilyachenko AN, Levitsky MM, Khrustalev VN, Zubavichus YV, Shul’pina LS, Shubina ES, Shul’pin GB. Mild and Regioselective Hydroxylation of Methyl Group in Neocuproine: Approach to an N,O-Ligated Cu6 Cage Phenylsilsesquioxane. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00845] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexey N. Bilyachenko
- Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow, Russia
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay Str., 6, Moscow, Russia
| | - Mikhail M. Levitsky
- Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow, Russia
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay Str., 6, Moscow, Russia
| | - Yan V. Zubavichus
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, Moscow, Russia
| | - Lidia S. Shul’pina
- Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow, Russia
| | - Elena S. Shubina
- Nesmeyanov
Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, Moscow, Russia
| | - Georgiy B. Shul’pin
- Semenov
Institute of Chemical Physics, Russian Academy of Sciences, ulitsa Kosygina,
dom 4, Moscow, Russia
- Plekhanov Russian University of Economics, Stremyannyi pereulok, dom 36, Moscow, Russia
| |
Collapse
|
21
|
Bilyachenko AN, Khrustalev VN, Zubavichus YV, Shul'pina LS, Kulakova AN, Bantreil X, Lamaty F, Levitsky MM, Gutsul EI, Shubina ES, Shul'pin GB. Heptanuclear Fe 5Cu 2-Phenylgermsesquioxane containing 2,2'-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C-H Compounds. Inorg Chem 2018; 57:528-534. [PMID: 29232118 DOI: 10.1021/acs.inorgchem.7b02881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new representative of an unusual family of metallagermaniumsesquioxanes, namely the heterometallic cagelike phenylgermsesquioxane (PhGeO2)12Cu2Fe5(O)OH(PhGe)2O5(bipy)2 (2), was synthesized and structurally characterized. Fe(III) ions of the complex are coordinated by oxa ligands: (i) cyclic (PhGeO2)12 and acyclic (Ph2Ge2O5) germoxanolates and (ii) O2- and (iii) HO- moieties. In turn, Cu(II) ions are coordinated by both oxa (germoxanolates) and aza ligands (2,2'-bipyridines). This "hetero-type" of ligation gives in sum an attractive pagoda-like molecular architecture of the complex 2. Product 2 showed a high catalytic activity in the oxidation of alkanes to the corresponding alkyl hydroperoxides (in yields up to 30%) and alcohols (in yields up to 100%) and in the oxidative formation of benzamides from alcohols (catalyst loading down to 0.4 mol % in Cu/Fe).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Yan V Zubavichus
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Alena N Kulakova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier ENSCM, Site Triolet , Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier ENSCM, Site Triolet , Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Evgeniy I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences , ulitsa Kosygina, dom 4, Moscow 119991, Russia.,Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| |
Collapse
|
22
|
Kulakova AN, Bilyachenko AN, Korlyukov AA, Long J, Levitsky MM, Shubina ES, Guari Y, Larionova J. New Ni4Na2-phenylgermsesquioxane architecture: synthesis, structure and slow dynamic behaviour. Dalton Trans 2018; 47:6893-6897. [DOI: 10.1039/c8dt00900g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The first Ni(ii)-based germaniumsesquioxane cage compound [(PhGeO1.5)10(NiO)4(NaO0.5)2] presents a unique sandwich-like structure and exhibits slow dynamics of the magnetization.
Collapse
Affiliation(s)
- Alena N. Kulakova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| | - Alexey N. Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| | - Alexander A. Korlyukov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Pirogov Russian National Research Medical University
- 117997 Moscow
| | - Jérôme Long
- Institut Charles Gerhardt
- UMR5253
- University of Montpellier
- ENSCM
- CNRS
| | - Mikhail M. Levitsky
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Elena S. Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Yannick Guari
- Institut Charles Gerhardt
- UMR5253
- University of Montpellier
- ENSCM
- CNRS
| | - Joulia Larionova
- Institut Charles Gerhardt
- UMR5253
- University of Montpellier
- ENSCM
- CNRS
| |
Collapse
|
23
|
Shul'pin GB, Vinogradov MM, Shul'pina LS. Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a review). Catal Sci Technol 2018. [DOI: 10.1039/c8cy00659h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, osmium complexes have found applications not only in thecis-hydroxylation of olefins but also very efficient in the oxygenation of C–H compounds (saturated and aromatic hydrocarbons and alcohols) by hydrogen peroxide as well as organic peroxides.
Collapse
Affiliation(s)
- Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
- Plekhanov Russian University of Economics
| | - Mikhail M. Vinogradov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
24
|
Kulakova AN, Bilyachenko AN, Levitsky MM, Khrustalev VN, Korlyukov AA, Zubavichus YV, Dorovatovskii PV, Lamaty F, Bantreil X, Villemejeanne B, Martinez J, Shul'pina LS, Shubina ES, Gutsul EI, Mikhailov IA, Ikonnikov NS, Tsareva US, Shul'pin GB. Si 10Cu 6N 4 Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorg Chem 2017; 56:15026-15040. [PMID: 29185729 DOI: 10.1021/acs.inorgchem.7b02320] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis, composition, and catalytic properties of a new family of hexanuclear Cu(II)-based phenylsilsesquioxanes are described here. Structural studies of 17 synthesized compounds revealed the general principle underlying their molecular topology: viz., a central metal oxide layer consisting of two Cu3 trimers is coordinated by two cyclic [PhSiO1.5]5 siloxanolate ligands to form a skewed sandwich architecture with the composition [(PhSiO1.5)10(CuO)6]2+. In addition to this O ligation by the siloxanolate rings, two opposite copper ions are additionally coordinated by the nitrogen atoms of corresponding N ligand(s), such as 2,2'-bipyridine (compounds 1-9), 1,10-phenanthroline (compounds 10-13), mixed 1,10-phenanthroline/2,2'-bipyridine (compound 14), or bathophenanthroline (compounds 15-17). Finally, the charge balance is maintained by two HO- (compounds 1-7, 10-13, and 15-17), two H3CO- (compound 8), or two CH3COO- (compounds 9 and 14) anions. Complexes 1 and 10 exhibited a high activity in the oxidative amidation oxidation of alcohols. Compounds 1, 10, and 15 are very efficient homogeneous catalysts in the oxidation of alkanes and alcohols with peroxides.
Collapse
Affiliation(s)
- Alena N Kulakova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Pirogov Russian National Research Medical University , Ostrovitianov str., 1, Moscow, Russia
| | - Yan V Zubavichus
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, Moscow, Russia
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Benoît Villemejeanne
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Evgeniy I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Igor A Mikhailov
- Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow, Russia
| | - Nikolay S Ikonnikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Ul'yana S Tsareva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Georgiy B Shul'pin
- Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences , ulitsa Kosygina, dom 4, Moscow, Russia
| |
Collapse
|
25
|
Bilyachenko AN, Yalymov A, Dronova M, Korlyukov AA, Vologzhanina AV, Es'kova MA, Long J, Larionova J, Guari Y, Dorovatovskii PV, Shubina ES, Levitsky MM. Family of Polynuclear Nickel Cagelike Phenylsilsesquioxanes; Features of Periodic Networks and Magnetic Properties. Inorg Chem 2017; 56:12751-12763. [PMID: 29048173 DOI: 10.1021/acs.inorgchem.7b01436] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new family of bi-, tetra-, penta-, and hexanickel cagelike phenylsilsesquioxanes 1-6 was obtained by self-assembly and transmetalation procedures. Their crystal structures were established by single-crystal X-ray analysis, and features of crystal packing relevant to the network formation were studied by a topological analysis. Compounds 1, 2, and 4 are isolated architectures, while 3, 5, and 6 present extended 1D and 3D networks. The investigation of magnetic properties revealed the presence of ferro- (1 and 3-5) or antiferromagnetic (2 and 6) interactions between Ni(II) ions, giving rise in the most cases (1, 2, and 4-6) to the presence of a slow relaxation of the magnetization, which can originate from the spin frustration.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Alexey Yalymov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Marina Dronova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Alexander A Korlyukov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia.,Pirogov Russian National Research Medical University , Ostrovitianov str., 1, 117997 Moscow, Russia
| | - Anna V Vologzhanina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Marina A Es'kova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Jérôme Long
- Institut Charles Gerhardt de Montpellier (ICGM), UMR5253, Equipe IMNO, Université de Montpellier , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Joulia Larionova
- Institut Charles Gerhardt de Montpellier (ICGM), UMR5253, Equipe IMNO, Université de Montpellier , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Yannick Guari
- Institut Charles Gerhardt de Montpellier (ICGM), UMR5253, Equipe IMNO, Université de Montpellier , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" Akademika Kurchatova pl., 1, 123098 Moscow, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Mikhail M Levitsky
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| |
Collapse
|
26
|
Bilyachenko AN, Korlyukov AA, Vologzhanina AV, Khrustalev VN, Kulakova AN, Long J, Larionova J, Guari Y, Dronova MS, Tsareva US, Dorovatovskii PV, Shubina ES, Levitsky MM. Tuning linkage isomerism and magnetic properties of bi- and tri-metallic cage silsesquioxanes by cation and solvent effects. Dalton Trans 2017; 46:12935-12949. [DOI: 10.1039/c7dt02017a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of the polynuclear cage metallasilsesquioxane [(PhSiO1.5)12(CuO)4(NaO0.5)4(n-BuOH)8] with a globular structure to act as a stable building block of hybrid materials with respect to the substitution of sodium cations and terminal butanol molecules was confirmed.
Collapse
Affiliation(s)
- Alexey N. Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Pirogov Russian National Research Medical University
- 117997 Moscow
| | - Anna V. Vologzhanina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | | | - Alena N. Kulakova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Jérôme Long
- Institut Charles Gerhardt
- UMR5253
- Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- Univ. Montpellier
| | - Joulia Larionova
- Institut Charles Gerhardt
- UMR5253
- Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- Univ. Montpellier
| | - Yannick Guari
- Institut Charles Gerhardt
- UMR5253
- Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- Univ. Montpellier
| | - Marina S. Dronova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Ulyana S. Tsareva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | | | - Elena S. Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Mikhail M. Levitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| |
Collapse
|