1
|
Rahman Khan A, Aziz Z, Iqbal A, Sheema, Rashid Khan A, Zafar S. Biotransformation of hydrocortisone succinate with whole cell cultures of Monascus purpureus and Cunninghamella echinulata. Steroids 2024; 209:109466. [PMID: 38955303 DOI: 10.1016/j.steroids.2024.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Hydrocortisone succinate (1) is a synthetic anti-inflammatory drug and key intermediate in the synthesis of other steroidal drugs. This work is based on the fungal biotransformation of 1, using Monascus purpureus and Cunninghamella echinulata strains. Comopound 1 was transformed into four metabolites, identified as hydrocortisone (2), 11β-hydroxyandrost-4-en-3,17-dione (3), Δ1-cortienic acid (4), and hydrocortisone-17-succinate (5), obtained through side chain cleavage, hydrolysis, dehydrogenation, and oxidation reactions. These compounds have previously been synthesized either chemically or enzymatically from different precursors. Though this is not the first report on the biotransformation of 1, but it obviously is a first, where the biotransformed products of compound 1 have been characterized structurally with the help of modern spectroscopic techniques. It is noteworthy that these products have already shown biological potential, however a more thorough investigation of the anti-inflammatory properties of these metabolites would be of high value. These results not only emphasize upon the immense potential of biotransformation in catalysis of reactions, otherwise not-achievable chemically, but also holds promise for the development of novel anti-inflammatory compounds.
Collapse
Affiliation(s)
- Abdur Rahman Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zainab Aziz
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Amir Iqbal
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Sheema
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Afsana Rashid Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Li J, Gao J, Ai J, Yin Z, Lu F, Qin HM, Mao S. Production of 17α-hydroxyprogesterone using an engineered biocatalyst with efficient electron transfer and improved 5-aminolevulinic acid synthesis coupled with a P450 hydroxylase. Int J Biol Macromol 2024; 273:132831. [PMID: 38825287 DOI: 10.1016/j.ijbiomac.2024.132831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
17α-Hydroxyprogesterone (17α-OH-PROG) is an important intermediate with a wide range of applications in the pharmaceutical industry. Strategies based on efficient electron transfer and cofactor regeneration were used for the production of 17α-OH-PROG. Here, CYP260A1, Fpr and Adx were expressed using a double plasmid system, resulting in higher biotransformation efficiency. Further optimization of reaction conditions and addition of polymyxin B increased the production of 17α-OH-PROG from 12.52 mg/L to 102.37 mg/L after 12 h of biotransformation. To avoid the addition of external 5-aminolevulinic acid (ALA) as a heme precursor for the P450 enzyme, a modified C5 pathway was introduced into the engineered strain, further reducing the overall process cost. The resulting whole-cell biocatalyst achieved the highest biotransformation yield of 17α-OH-PROG reported to date, offering a promising strategy for commercial application of P450 enzymes in industrial production of hydroxylated intermediates.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Jikai Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Jiaying Ai
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Ziyang Yin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
4
|
Ma S, Ma Y. A sustainable strategy for biosynthesis of Rebaudioside D using a novel glycosyltransferase of Solanum tuberosum. Biotechnol J 2024; 19:e2300628. [PMID: 38403450 DOI: 10.1002/biot.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Bioconversion of Rebaudioside D faces high-cost obstacles. Herein, a novel glycosyltransferase StUGT converting Rebaudioside A to Rebaudioside D was screened and characterized, which exhibits stronger affinity and substrate specificity for Rebaudioside A than previously reported enzymes. A whole-cell catalytic system was thus developed using the StUGT strain. The production of Rebaudioside D was enhanced significantly by enhancing cell permeability, and the maximum production of 6.12 g/L and the highest yield of 98.08% by cell catalyst was obtained by statistical-based optimization. A new cascade process utilizing this recombinant strain and E. coli expressing sucrose synthase was further established to reduce cost through replacing expensive UDPG with sucrose. A StUGT-GsSUS1 system exhibited high catalytic capability, and 5.27 g L-1 Rebaudioside D was achieved finally without UDPG addition by systematic optimization. This is the best performance reported in cell-cascaded biosynthesis, which paves a new cost-effective strategy for sustainable synthesis of scarce premium sweeteners from biomass.
Collapse
Affiliation(s)
- Siyuan Ma
- Department of Biochemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Ma
- Department of Biochemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- School of Marine Science and Technology, Tianjin University, Tianjin, China
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Liu HL, Yi PH, Wu JM, Cheng F, Liu ZQ, Jin LQ, Xue YP, Zheng YG. Identification of a novel thermostable transaminase and its application in L-phosphinothricin biosynthesis. Appl Microbiol Biotechnol 2024; 108:184. [PMID: 38289384 PMCID: PMC10827958 DOI: 10.1007/s00253-024-13023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.
Collapse
Affiliation(s)
- Han-Lin Liu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Pu-Hong Yi
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Min Wu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Cheng
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Li-Qun Jin
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Ya-Ping Xue
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Guo Zheng
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
6
|
Ma L, Wu T, Liu P, Chen D, Cai S, Chen H, Zhou J, Zhu C, Li S. Green Production of a High-value Mosquito Insecticide of Nootkatone from Seaweed Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18919-18927. [PMID: 37991146 DOI: 10.1021/acs.jafc.3c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nootkatone is a type of valuable sesquiterpene that is widely used in food, cosmetics, fragrance, and other fields. The industry is faced with a major challenge due to the high expenses associated with plant-extracted nootkatone. We have developed a fermentation process for valencene production using seaweed hydrolysate as a carbon source via engineered Saccharomyces cerevisiae. Reduced-pressure distillation purified valencene was used as a substrate, and a yeast strain carrying HPO/AtCPR1 and ADH genes was constructed for whole-cell catalysis. After biotransformation at 25 °C for 3 h, a high yield of 73% for nootkatone production was obtained. Further, simple rotary evaporation was used to obtain nootkatone with a high purity of 97.4%. Mosquito-repellent testing showed that 1% nootkatone has a mosquito-repellent effect lasting up to 6 h, which is comparable to the 20% N,N-diethyl-meta-toluamide (DEET) effect. This study provided practical experience for developing third-generation biomass resources, generating new ideas for green manufacturing of valuable chemical products, and serving as a reference for creating efficient and eco-friendly mosquito repellents.
Collapse
Affiliation(s)
- Lingling Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tao Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Peiling Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongying Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shengliang Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jingtao Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Zhu HJ, Pan J, Li CX, Chen FF, Xu JH. Construction and optimization of a biocatalytic route for the synthesis of neomenthylamine from menthone. BIORESOUR BIOPROCESS 2023; 10:75. [PMID: 38647910 PMCID: PMC10992614 DOI: 10.1186/s40643-023-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/09/2023] [Indexed: 04/25/2024] Open
Abstract
(+)-Neomenthylamine is an important industrial precursor used to synthesize high value-added chemicals. Here, we report a novel biocatalytic route to synthesize (+)-neomenthylamine by amination of readily available (-)-menthone substrate using ω-transaminase. By screening a panel of ω-transaminases, an ω-transaminase from Vibrio fluvialis JS17 was identified with considerable amination activity to (-)-menthone, and then characterization of enzymatic properties was conducted for the enzyme. Under optimized conditions, 10 mM (-)-menthone was transformed in a mild aqueous phase with 4.7 mM product yielded in 24 h. The biocatalytic route using inexpensive starting materials (ketone substrate and amino donor) and mild reaction conditions represents an easy and green approach for (+)-neomenthylamine synthesis. This method underscores the potential of biocatalysts in the synthesis of unnatural terpenoid amine derivatives.
Collapse
Affiliation(s)
- Hui-Jue Zhu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Fei-Fei Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
8
|
Zhang Y, Meng W, He Y, Chen Y, Shao M, Yuan J. Multidimensional optimization for accelerating light-powered biocatalysis in Rhodopseudomonas palustris. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:160. [PMID: 37891652 PMCID: PMC10612212 DOI: 10.1186/s13068-023-02410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Whole-cell biocatalysis has been exploited to convert a variety of substrates into high-value bulk or chiral fine chemicals. However, the traditional whole-cell biocatalysis typically utilizes the heterotrophic microbes as the biocatalyst, which requires carbohydrates to power the cofactor (ATP, NAD (P)H) regeneration. RESULTS In this study, we sought to harness purple non-sulfur photosynthetic bacterium (PNSB) as the biocatalyst to achieve light-driven cofactor regeneration for cascade biocatalysis. We substantially improved the performance of Rhodopseudomonas palustris-based biocatalysis using a highly active and conditional expression system, blocking the side-reactions, controlling the feeding strategy, and attenuating the light shading effect. Under light-anaerobic conditions, we found that 50 mM ferulic acid could be completely converted to vanillyl alcohol using the recombinant strain with 100% efficiency, and > 99.9% conversion of 50 mM p-coumaric acid to p-hydroxybenzyl alcohol was similarly achieved. Moreover, we examined the isoprenol utilization pathway for pinene synthesis and 92% conversion of 30 mM isoprenol to pinene was obtained. CONCLUSIONS Taken together, these results suggested that R. palustris could be a promising host for light-powered biotransformation, which offers an efficient approach for synthesizing value-added chemicals in a green and sustainable manner.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Wenchang Meng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yuting He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yuhui Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Mingyu Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
9
|
Fenibo EO, Selvarajan R, Abia ALK, Matambo T. Medium-chain alkane biodegradation and its link to some unifying attributes of alkB genes diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162951. [PMID: 36948313 DOI: 10.1016/j.scitotenv.2023.162951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Hydrocarbon footprints in the environment, via biosynthesis, natural seepage, anthropogenic activities and accidents, affect the ecosystem and induce a shift in the healthy biogeochemical equilibrium that drives needed ecological services. In addition, these imbalances cause human diseases and reduce animal and microorganism diversity. Microbial bioremediation, which capitalizes on functional genes, is a sustainable mitigation option for cleaning hydrocarbon-impacted environments. This review focuses on the bacterial alkB functional gene, which codes for a non-heme di‑iron monooxygenase (AlkB) with a di‑iron active site that catalyzes C8-C16 medium-chain alkane metabolism. These enzymes are ubiquitous and share common attributes such as being controlled by global transcriptional regulators, being a component of most super hydrocarbon degraders, and their distributions linked to horizontal gene transfer (HGT) events. The phylogenetic approach used in the HGT detection suggests that AlkB tree topology clusters bacteria functionally and that a preferential gradient dictates gene distribution. The alkB gene also acts as a biomarker for bioremediation, although it is found in pristine environments and absent in some hydrocarbon degraders. For instance, a quantitative molecular method has failed to link alkB copy number to contamination concentration levels. This limitation may be due to AlkB homologues, which have other functions besides n-alkane assimilation. Thus, this review, which focuses on Pseudomonas putida GPo1 alkB, shows that AlkB proteins are diverse but have some unifying trends around hydrocarbon-degrading bacteria; it is erroneous to rely on alkB detection alone as a monitoring parameter for hydrocarbon degradation, alkB gene distribution are preferentially distributed among bacteria, and the plausible explanation for AlkB affiliation to broad-spectrum metabolism of hydrocarbons in super-degraders hitherto reported. Overall, this review provides a broad perspective of the ecology of alkB-carrying bacteria and their directed biodegradation pathways.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa
| | - Akebe Luther King Abia
- Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa; Environmental Research Foundation, Westville 3630, South Africa
| | - Tonderayi Matambo
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa.
| |
Collapse
|
10
|
Yuan S, Xu C, Jin M, Xian M, Liu W. Synergistic improvement of cinnamylamine production by metabolic regulation. J Biol Eng 2023; 17:14. [PMID: 36823535 PMCID: PMC9948449 DOI: 10.1186/s13036-023-00334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Aromatic primary amines (APAs) are key intermediates in the chemical industry with numerous applications. Efficient and mild biocatalytic synthesis is an excellent complement to traditional chemical synthesis. Our lab previously reported a whole-cell catalytic system for the synthesis of APAs catalyzed by carboxylic acid reductase from Neurospora crassa (ncCAR) and ω-transaminase from Ochrobactrum anthropi (OATA). However, the accumulation of toxic intermediates (aromatic aldehydes) during biocatalytic synthesis affected yields of APAs due to metabolic imbalance. RESULTS In this work, the biocatalytic synthesis of APAs (taking cinnamylamine as an example) was metabolically regulated by the overexpression or knockout of five native global transcription factors (TFs), the overexpression of eight native resistance genes, and optimization of promoters. Transcriptome analysis showed that knockout of the TF arcA increased the fluxes of NADPH and ATP in E. coli, while the rate of pyruvate metabolism was accelerated. In addition, the genes related to stress and detoxification were upregulated with the overexpression of resistance gene marA, which reduced the NADPH level in E. coli. Then, the expression level of soluble OATA increased by promoter optimization. Overall, arcA and marA could regulate the catalytic rate of NADPH- dependent ncCAR, while arcA and optimized promoter could regulate the catalytic rate of OATA. Lastly, the cinnamylamine yield of the best metabolically engineered strain S020 was increased to 90% (9 mM, 1.2 g/L), and the accumulation of cinnamaldehyde was below 0.9 mM. This work reported the highest production of cinnamylamine by biocatalytic synthesis. CONCLUSION This regulatory process provides a common strategy for regulating the biocatalytic synthesis of other APAs. Being entirely biocatalytic, our one-pot procedure provides considerable advantages in terms of environmental and safety impacts over reported chemical methods.
Collapse
Affiliation(s)
- Shan Yuan
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chao Xu
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China
| | - Miaomiao Jin
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, P.R. China.
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, P.R. China.
| |
Collapse
|
11
|
Wang MY, Cai SJ, Lin JC, Ji XJ, Zhang ZG. New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones. Molecules 2023; 28:molecules28031422. [PMID: 36771091 PMCID: PMC9921870 DOI: 10.3390/molecules28031422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The biocatalytic asymmetric reduction of prochiral ketones for the production of enantiopure alcohols is highly desirable due to its inherent advantages over chemical methods. In this study, a new bacterial strain capable of transforming ketones to corresponding alcohols with high activity and excellent enantioselectivity was discovered in a soil sample. The strain was subsequently identified as Bacillus cereus TQ-2 based on its physiological characteristics and 16S rDNA sequence analysis. Under optimized reaction conditions, the resting cells of B. cereus TQ-2 converted acetophenone to enantioenriched (R)-1-phenylethanol with 99% enantiometric excess following anti-Prelog's rule, which is scarce in biocatalytic ketone reduction. The optimum temperature for the cells was 30 °C, and considerable catalytic activity was observed over a broad pH range from 5.0 to 9.0. The cells showed enhanced catalytic activity in the presence of 15% (v/v) glycerol as a co-substrate. The catalytic activity can also be substantially improved by adding Ca2+ or K+ ions. Moreover, the B. cereus TQ-2 cell was highly active in reducing several structurally diverse ketones and aldehydes to form corresponding alcohols with good to excellent conversion. Our study provides a versatile whole-cell biocatalyst that can be used in the asymmetric reduction of ketones for the production of chiral alcohol, thereby expanding the biocatalytic toolbox for potential practical applications.
Collapse
Affiliation(s)
- Min-Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Shun-Ju Cai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Jia-Chun Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
- Correspondence:
| |
Collapse
|
12
|
Hernik D, Gatti F, Brenna E, Szczepańska E, Olejniczak T, Boratyński F. Stereoselective synthesis of whisky lactone isomers catalyzed by bacteria in the genus Rhodococcus. Front Microbiol 2023; 14:1117835. [PMID: 36744099 PMCID: PMC9893411 DOI: 10.3389/fmicb.2023.1117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Whisky lactone is a naturally occurring fragrance compound in oak wood and is widely used as a sensory additive in food products. However, safe and efficient methods for the production of its individual enantiomers for applications in the food industry are lacking. The aim of this study was to develop an efficient and highly stereoselective process for the synthesis of individual enantiomeric forms of whisky lactones. The proposed three-step method involves (1) column chromatography separation of a diastereoisomeric mixture of whisky lactone, (2) chemical reduction of cis-and trans-whisky lactones to corresponding syn-and anti-diols, and (3) microbial oxidation of racemic diols to individual enantiomers of whisky lactone. Among various bacteria in the genera Dietzia, Gordonia, Micrococcus, Rhodococcus, and Streptomyces, R. erythropolis DSM44534 and R. erythropolis PCM2150 effectively oxidized anti-and syn-3-methyl-octane-1,4-diols (1a-b) to corresponding enantiomerically pure cis-and trans-whisky lactones, indicating high alcohol dehydrogenase activity. Bio-oxidation catalyzed by whole cells of these strains yielded enantiomerically pure isomers of trans-(+)-(4S,5R) (2a), trans-(-)-(4R,5S) (2b), and cis-(+)-(4R,5R) (2d) whisky lactones. The optical density of bacterial cultures and the impact of the use of acetone powders as catalysts on the course of the reaction were also evaluated. Finally, the application of R. erythropolis DSM44534 in the form of an acetone powder generated the enantiomerically enriched cis-(-)-(4S,5S)-isomer (2c) from the corresponding syn-diol (1b). The newly developed method provides an improved approach for the synthesis of chiral whisky lactones.
Collapse
Affiliation(s)
- Dawid Hernik
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland,*Correspondence: Dawid Hernik, ✉
| | - Francesco Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland,Filip Boratyński, ✉
| |
Collapse
|
13
|
Braz JF, Dencheva NV, Malfois M, Denchev ZZ. Synthesis of Novel Polymer-Assisted Organic-Inorganic Hybrid Nanoflowers and Their Application in Cascade Biocatalysis. Molecules 2023; 28:839. [PMID: 36677897 PMCID: PMC9864776 DOI: 10.3390/molecules28020839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
This study reports on the synthesis of novel bienzyme polymer-assisted nanoflower complexes (PANF), their morphological and structural characterization, and their effectiveness as cascade biocatalysts. First, highly porous polyamide 6 microparticles (PA6 MP) are synthesized by activated anionic polymerization in solution. Second, the PA6 MP are used as carriers for hybrid bienzyme assemblies comprising glucose oxidase (GOx) and horseradish peroxidase (HRP). Thus, four PANF complexes with different co-localization and compartmentalization of the two enzymes are prepared. In samples NF GH/PA and NF GH@PA, both enzymes are localized within the same hybrid flowerlike organic-inorganic nanostructures (NF), the difference being in the way the PA6 MP are assembled with NF. In samples NF G/PAiH and NF G@PAiH, only GOx is located in the NF, while HRP is preliminary immobilized on PA6 MP. The morphology and the structure of the four PANF complexes have been studied by microscopy, spectroscopy, and synchrotron X-ray techniques. The catalytic activity of the four PANF was assessed by a two-step cascade reaction of glucose oxidation. The PANF complexes are up to 2-3 times more active than the free GOx/HRP dyad. They also display enhanced kinetic parameters, superior thermal stability in the 40-60 °C range, optimum performance at pH 4-6, and excellent storage stability. All PANF complexes are active for up to 6 consecutive operational cycles.
Collapse
Affiliation(s)
- Joana F. Braz
- IPC—Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal
| | - Nadya V. Dencheva
- IPC—Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal
| | - Marc Malfois
- ALBA Synchrotron Facility, Cerdanyola del Valés, 0890 Barcelona, Spain
| | - Zlatan Z. Denchev
- IPC—Institute for Polymers and Composites, University of Minho, 4800-056 Guimarães, Portugal
| |
Collapse
|
14
|
Rossino G, Robescu MS, Licastro E, Tedesco C, Martello I, Maffei L, Vincenti G, Bavaro T, Collina S. Biocatalysis: A smart and green tool for the preparation of chiral drugs. Chirality 2022; 34:1403-1418. [PMID: 35929567 DOI: 10.1002/chir.23498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023]
Abstract
Over the last decades, biocatalysis has achieved growing interest thanks to its potential to enable high efficiency, high yield, and eco-friendly processes aimed at the production of pharmacologically relevant compounds. Particularly, biocatalysis proved an effective and potent tool in the preparation of chiral molecules, and the recent innovations of biotechnologies and nanotechnologies open up a new era of further developments in this field. Different strategies are now available for the synthesis of chiral drugs and their intermediates. Enzymes are green tools that offer several advantages, associated both to catalysis and environmentally friendly reactants. Specifically, the use of enzymes isolated from biological sources or of whole-cell represents a valuable approach to obtain pharmaceutical products. The sustainability, the higher efficiency, and cost-effectiveness of biocatalytic reactions result in improved performance and properties that can be translated from academia to industry. In this review, we focus on biocatalytic approaches for synthesizing chiral drugs or their intermediates. Aiming to unveil the potentialities of biocatalysis systems, we discuss different examples of innovative biocatalytic approaches and their applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Marina Simona Robescu
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Ester Licastro
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Claudia Tedesco
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Ilaria Martello
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Luciana Maffei
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Gregory Vincenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| |
Collapse
|
15
|
The Characterization of a Novel D-allulose 3-Epimerase from Blautia produca and Its Application in D-allulose Production. Foods 2022; 11:3225. [PMCID: PMC9601914 DOI: 10.3390/foods11203225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
D-allulose is a natural rare sugar with important physiological properties that is used in food, health care items, and even the pharmaceutical industry. In the current study, a novel D-allulose 3-epimerase gene (Bp-DAE) from the probiotic strain Blautia produca was discovered for the production and characterization of an enzyme known as Bp-DAE that can epimerize D-fructose into D-allulose. Bp-DAE was strictly dependent on metals (Mn2+ and Co2+), and the addition of 1 mM of Mn2+ could enhance the half-life of Bp-DAE at 55 °C from 60 to 180 min. It exhibited optimal activity in a pH of 8 and 55 °C, and the Km values of Bp-DAE for the different substrates D-fructose and D-allulose were 235.7 and 150.7 mM, respectively. Bp-DAE was used for the transformation from 500 g/L D-fructose to 150 g/L D-allulose and exhibited a 30% of conversion yield during biotransformation. Furthermore, it was possible to employ the food-grade microbial species Bacillus subtilis for the production of D-allulose using a technique of whole-cell catalysis to circumvent the laborious process of enzyme purification and to obtain a more stable biocatalyst. This method also yields a 30% conversion yield.
Collapse
|
16
|
Totaro G, Sisti L, Marchese P, Colonna M, Romano A, Gioia C, Vannini M, Celli A. Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid. CHEMSUSCHEM 2022; 15:e202200501. [PMID: 35438242 PMCID: PMC9400982 DOI: 10.1002/cssc.202200501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
2,5-Furandicarboxylic acid (FDCA) is currently considered one of the most relevant bio-sourced building blocks, representing a fully sustainable competitor for terephthalic acid as well as the main component in green polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The oxidation of biobased 5-hydroxymethylfurfural (HMF) represents the most straightforward approach to obtain FDCA, thus attracting the attention of both academia and industries, as testified by Avantium with the creation of a new plant expected to produce 5000 tons per year. Several approaches allow the oxidation of HMF to FDCA. Metal-mediated homogeneous and heterogeneous catalysis, metal-free catalysis, electrochemical approaches, light-mediated procedures, as well as biocatalytic processes share the target to achieve FDCA in high yield and mild conditions. This Review aims to give an up-to-date overview of the current developments in the main synthetic pathways to obtain FDCA from HMF, with a specific focus on process sustainability.
Collapse
Affiliation(s)
- Grazia Totaro
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Laura Sisti
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Paola Marchese
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Martino Colonna
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Angela Romano
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Claudio Gioia
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Micaela Vannini
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Annamaria Celli
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| |
Collapse
|
17
|
Self-sufficient whole-cell biocatalysis for 3-(aminomethyl) pyridine synthesis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Chen Z, Gao XD, Li Z. Recent Advances Regarding the Physiological Functions and Biosynthesis of D-Allulose. Front Microbiol 2022; 13:881037. [PMID: 35495640 PMCID: PMC9048046 DOI: 10.3389/fmicb.2022.881037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 01/11/2023] Open
Abstract
D-Allulose, a generally regarded as safe (GRAS) sugar, is rare in nature. It is among the most promising sweeteners for future use due to its low caloric content, sucrose-like taste, and unique functions. D-Allulose has many physiological effects, such as antiobesity, antihyperglycemia, antidiabetes, anti-inflammatory, antioxidant, and neuroprotective effects. Therefore, D-allulose has important application value in the food, pharmaceutical, and healthcare industries. However, the high cost of D-allulose production limits its large-scale application. Currently, biotransformation is very attractive for D-allulose synthesis, with the two main methods of biosynthesis being the Izumoring strategy and the DHAP-dependent aldolase strategy. This article reviews recent advances regarding the physiological functions and biosynthesis of D-allulose. In addition, future perspectives on the production of D-allulose are presented.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Salama S, Habib MH, Hatti-Kaul R, Gaber Y. Reviewing a plethora of oxidative-type reactions catalyzed by whole cells of Streptomyces species. RSC Adv 2022; 12:6974-7001. [PMID: 35424663 PMCID: PMC8982256 DOI: 10.1039/d1ra08816e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Selective oxidation reactions represent a challenging task for conventional organic chemistry. Whole-cell biocatalysis provides a very convenient, easy to apply method to carry out different selective oxidation reactions including chemo-, regio-, and enantio-selective reactions. Streptomyces species are important biocatalysts as they can catalyze these selective reactions very efficiently owing to the wide diversity of enzymes and enzymatic cascades in their cell niche. In this review, we present and analyze most of the examples reported to date of oxidative reactions catalyzed by Streptomyces species as whole-cell biocatalysts. We discuss 33 different Streptomyces species and strains and the role they play in different oxidative reactions over the past five decades. The oxidative reactions have been classified into seven categories that include: hydroxylation of steroids/non-steroids, asymmetric sulfoxidations, oxidation of aldehydes, multi-step oxidations, oxidative cleavage, and N-oxidations. The role played by Streptomyces species as recombinant hosts catalyzing bio-oxidations has also been highlighted.
Collapse
Affiliation(s)
- Sara Salama
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62517 Egypt
| | - Mohamed H Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University Sweden
| | - Yasser Gaber
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University Al-Karak 61710 Jordan
| |
Collapse
|
20
|
Srdič M, Fessner ND, Yildiz D, Glieder A, Spiertz M, Schwaneberg U. Preparative Production of Functionalized (N- and O-Heterocyclic) Polycyclic Aromatic Hydrocarbons by Human Cytochrome P450 3A4 in a Bioreactor. Biomolecules 2022; 12:biom12020153. [PMID: 35204652 PMCID: PMC8961652 DOI: 10.3390/biom12020153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their N- and O-containing derivatives (N-/O-PAHs) are environmental pollutants and synthetically attractive building blocks in pharmaceuticals. Functionalization of PAHs can be achieved via C-H activation by cytochrome P450 enzymes (e.g., P450 CYP3A4) in an environmentally friendly manner. Despite its broad substrate scope, the contribution of CYP3A4 to metabolize common PAHs in humans was found to be small. We recently showcased the potential of CYP3A4 in whole-cell biocatalysis with recombinant yeast Komagataella phaffii (Pichia pastoris) catalysts for the preparative-scale synthesis of naturally occurring metabolites in humans. In this study, we aimed at exploring the substrate scope of CYP3A4 towards (N-/O)-PAHs and conducted a bioconversion experiment at 10 L scale to validate the synthetic potential of CYP3A4 for the preparative-scale production of functionalized PAH metabolites. Hydroxylated products were purified and characterized using HPLC and NMR analysis. In total, 237 mg of fluorenol and 48 mg of fluorenone were produced from 498 mg of fluorene, with peak productivities of 27.7 μmol/L/h for fluorenol and 5.9 μmol/L/h for fluorenone; the latter confirmed that CYP3A4 is an excellent whole-cell biocatalyst for producing authentic human metabolites.
Collapse
Affiliation(s)
- Matic Srdič
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Deniz Yildiz
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Markus Spiertz
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| |
Collapse
|
21
|
Troiano D, Orsat V, Dumont MJ. Use of filamentous fungi as biocatalysts in the oxidation of 5-(hydroxymethyl)furfural (HMF). BIORESOURCE TECHNOLOGY 2022; 344:126169. [PMID: 34695584 DOI: 10.1016/j.biortech.2021.126169] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to explore the use of filamentous fungi as oxidative biocatalysts. To that end, filamentous fungal whole-cells, comprising five different species were employed in the oxidation of 5-(hydroxymethyl)furfural (HMF). Two species (A. niger and T. reesei), which demonstrated superior HMF conversion and product accumulation, were further evaluated for growth on alternative substrates (e.g. pentoses) as well as for use in a chemo-biocatalytic reaction system. Concerning the latter, the two whole-cell biocatalysts were coupled with laccase/TEMPO in a one-pot reaction designed to enable catalysis of the three oxidative steps necessary to convert HMF into 2,5-furandicarboxylic acid (FDCA), a compound with immense potential in the production of sustainable and eco-friendly polymers. Ultimately, the optimal one-pot chemo-biocatalytic cascade system, comprising 1 g/L T. reesei whole cells coupled with 2.5 mM laccase and 20 mol% TEMPO, achieved a molar yield of 88% after 80 h.
Collapse
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
22
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
23
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
24
|
Zhang M, Xue Q, Zhang S, Zhou H, Xu T, Zhou J, Zheng Y, Li M, Kumar S, Zhao D, Xiang H. Development of whole-cell catalyst system for sulfide biotreatment based on the engineered haloalkaliphilic bacterium. AMB Express 2021; 11:142. [PMID: 34693461 PMCID: PMC8542531 DOI: 10.1186/s13568-021-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Microorganisms play an essential role in sulfide removal. Alkaline absorption solution facilitates the sulfide’s dissolution and oxidative degradation, so haloalkaliphile is a prospective source for environmental-friendly and cost-effective biodesulfurization. In this research, 484 sulfide oxidation genes were identified from the metagenomes of the soda-saline lakes and a haloalkaliphilic heterotrophic bacterium Halomonas salifodinae IM328 (=CGMCC 22183) was isolated from the same habitat as the host for expression of a representative sequence. The genetic manipulation was successfully achieved through the conjugation transformation method, and sulfide: quinone oxidoreductase gene (sqr) was expressed via pBBR1MCS derivative plasmid. Furthermore, a whole-cell catalyst system was developed by using the engineered strain that exhibited a higher rate of sulfide oxidation under the optimal alkaline pH of 9.0. The whole-cell catalyst could be recycled six times to maintain the sulfide oxidation rates from 41.451 to 80.216 µmol·min−1·g−1 dry cell mass. To summarize, a whole-cell catalyst system based on the engineered haloalkaliphilic bacterium is potentiated to be applied in the sulfide treatment at a reduced cost.
Collapse
|
25
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
26
|
Yang C, Liu Y, Liu WQ, Wu C, Li J. Designing Modular Cell-free Systems for Tunable Biotransformation of l-phenylalanine to Aromatic Compounds. Front Bioeng Biotechnol 2021; 9:730663. [PMID: 34395411 PMCID: PMC8355704 DOI: 10.3389/fbioe.2021.730663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free systems have been used to synthesize chemicals by reconstitution of in vitro expressed enzymes. However, coexpression of multiple enzymes to reconstitute long enzymatic pathways is often problematic due to resource limitation/competition (e.g., energy) in the one-pot cell-free reactions. To address this limitation, here we aim to design a modular, cell-free platform to construct long biosynthetic pathways for tunable synthesis of value-added aromatic compounds, using (S)-1-phenyl-1,2-ethanediol ((S)-PED) and 2-phenylethanol (2-PE) as models. Initially, all enzymes involved in the biosynthetic pathways were individually expressed by an E. coli-based cell-free protein synthesis (CFPS) system and their catalytic activities were confirmed. Then, three sets of enzymes were coexpressed in three cell-free modules and each with the ability to complete a partial pathway. Finally, the full biosynthetic pathways were reconstituted by mixing two related modules to synthesize (S)-PED and 2-PE, respectively. After optimization, the final conversion rates for (S)-PED and 2-PE reached 100 and 82.5%, respectively, based on the starting substrate of l-phenylalanine. We anticipate that the modular cell-free approach will make a possible efficient and high-yielding biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
- Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Changzhu Wu
- Danish Institute for Advanced Study (DIAS) and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
27
|
Shang YT, Qin J, Gong JS, Wang ZK, Li H, Li H, Shi JS, Xu ZH. High-throughput screening of a nicotinate dehydrogenase producing Pseudomonas putida mutant for efficient biosynthesis of 6-hydroxynicotinic acid. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Abstract
Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capable of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes are dependent on nicotinamides (NAD(P)H) for the flavin reduction and subsequent reaction with molecular oxygen. BVMOs can be included in cascade reactions, coupled to other redox enzymes, such as alcohol dehydrogenases (ADHs) or ene-reductases (EREDs), so that the direct conversion of alcohols or α,β-unsaturated carbonylic compounds to the corresponding esters can be achieved. In the present review, the different synthetic methodologies that have been performed by employing multienzymatic strategies with BVMOs combining whole cells or isolated enzymes, through sequential or parallel methods, are described, with the aim of highlighting the advantages of performing multienzymatic systems, and show the recent advances for overcoming the drawbacks of using BVMOs in these techniques.
Collapse
|
29
|
Lukito BR, Wang Z, Sundara Sekar B, Li Z. Production of (R)-mandelic acid from styrene, L-phenylalanine, glycerol, or glucose via cascade biotransformations. BIORESOUR BIOPROCESS 2021; 8:22. [PMID: 38650227 PMCID: PMC10992357 DOI: 10.1186/s40643-021-00374-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
(R)-mandelic acid is an industrially important chemical, especially used for producing antibiotics. Its chemical synthesis often uses highly toxic cyanide to produce its racemic form, followed by kinetic resolution with 50% maximum yield. Here we report a green and sustainable biocatalytic method for producing (R)-mandelic acid from easily available styrene, biobased L-phenylalanine, and renewable feedstocks such as glycerol and glucose, respectively. An epoxidation-hydrolysis-double oxidation artificial enzyme cascade was developed to produce (R)-mandelic acid at 1.52 g/L from styrene with > 99% ee. Incorporation of deamination and decarboxylation into the above cascade enables direct conversion of L-phenylalanine to (R)-mandelic acid at 913 mg/L and > 99% ee. Expressing the five-enzyme cascade in an L-phenylalanine-overproducing E. coli NST74 strain led to the direct synthesis of (R)-mandelic acid from glycerol or glucose, affording 228 or 152 mg/L product via fermentation. Moreover, coupling of E. coli cells expressing L-phenylalanine biosynthesis pathway with E. coli cells expressing the artificial enzyme cascade enabled the production of 760 or 455 mg/L (R)-mandelic acid from glycerol or glucose. These simple, safe, and green methods show great potential in producing (R)-mandelic acid from renewable feedstocks.
Collapse
Affiliation(s)
- Benedict Ryan Lukito
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
30
|
Wang Z, Sundara Sekar B, Li Z. Recent advances in artificial enzyme cascades for the production of value-added chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124551. [PMID: 33360113 DOI: 10.1016/j.biortech.2020.124551] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzyme cascades are efficient tools to perform multi-step synthesis in one-pot in a green and sustainable manner, enabling non-natural synthesis of valuable chemicals from easily available substrates by artificially combining two or more enzymes. Bioproduction of many high-value chemicals such as chiral and highly functionalised molecules have been achieved by developing new enzyme cascades. This review summarizes recent advances on engineering and application of enzyme cascades to produce high-value chemicals (alcohols, aldehydes, ketones, amines, carboxylic acids, etc) from simple starting materials. While 2-step enzyme cascades are developed for versatile enantioselective synthesis, multi-step enzyme cascades are engineered to functionalise basic chemicals, such as styrenes, cyclic alkanes, and aromatic compounds. New cascade reactions have also been developed for producing valuable chemicals from bio-based substrates, such as ʟ-phenylalanine, and renewable feedstocks such as glucose and glycerol. The challenges in current process and future outlooks in the development of enzyme cascades are also addressed.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
31
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
32
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 572] [Impact Index Per Article: 190.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
33
|
Xie H, Zhao W, Ali DC, Zhang X, Wang Z. Interfacial biocatalysis in bacteria-stabilized Pickering emulsions for microbial transformation of hydrophobic chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02243h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Pickering emulsion interface is an exceptional habitat for bacteria to grow by simultaneously utilizing hydrophobic and hydrophilic chemicals.
Collapse
Affiliation(s)
- Haisheng Xie
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Wenyu Zhao
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Daniel Chikere Ali
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| |
Collapse
|
34
|
Sun QF, Zheng YC, Chen Q, Xu JH, Pan J. Engineering of an oleate hydratase for efficient C10-Functionalization of oleic acid. Biochem Biophys Res Commun 2020; 537:64-70. [PMID: 33387884 DOI: 10.1016/j.bbrc.2020.12.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
Oleate hydratase catalyzes the hydration of unsaturated fatty acids, giving access to C10-functionalization of oleic acid. The resultant 10-hydroxystearic acid is a key material for the synthesis of many biomass-derived value-added products. Herein, we report the engineering of an oleate hydratase from Paracoccus aminophilus (PaOH) with significantly improved catalytic efficiency (from 33 s-1 mM-1 to 119 s-1 mM-1), as well as 3.4 times increased half-life at 30 °C. The structural mechanism regarding the impact of mutations on the improved catalytic activity and thermostability was elucidated with the aid of molecular dynamics simulation. The practical feasibility of the engineered PaOH variant F233L/F122L/T15 N was demonstrated through the pilot synthesis of 10-hydroxystearic acid and 10-oxostearic acid via an optimized multi-enzymatic cascade reaction, with space-time yields of 540 g L-1 day-1 and 160 g L-1 day-1, respectively.
Collapse
Affiliation(s)
- Qi-Fan Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing and Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing and Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing and Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
35
|
Sekar BS, Mao J, Lukito BR, Wang Z, Li Z. Bioproduction of Enantiopure (
R
)‐ and (
S
)‐2‐Phenylglycinols from Styrenes and Renewable Feedstocks. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Jiwei Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Benedict Ryan Lukito
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
| | - Zilong Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| |
Collapse
|
36
|
Acevedo-Rocha CG, Hollmann F, Sanchis J, Sun Z. A Pioneering Career in Catalysis: Manfred T. Reetz. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Deft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville 3052, Victoria, Australia
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin, 300308 China
| |
Collapse
|
37
|
Shen L, Cang R, Yang G, Zeng A, Huang H, Zhang Z. Aureobasidium subglaciale F134 is a bifunctional whole-cell biocatalyst for Baeyer–Villiger oxidation or selective carbonyl reduction controllable by temperature. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Recent advances in biocatalytic derivatization of L-tyrosine. Appl Microbiol Biotechnol 2020; 104:9907-9920. [PMID: 33067683 DOI: 10.1007/s00253-020-10949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023]
Abstract
L-Tyrosine is an aromatic, polar, non-essential amino acid that contains a highly reactive α-amino, α-carboxyl, and phenolic hydroxyl group. Derivatization of these functional groups can produce chemicals, such as L-3,4-dihydroxyphenylalanine, tyramine, 4-hydroxyphenylpyruvic acid, and benzylisoquinoline alkaloids, which are widely employed in the pharmaceutical, food, and cosmetics industries. In this review, we summarize typical L-tyrosine derivatizations catalyzed by enzymatic biocatalysts, as well as the strategies and challenges associated with their production processes. Finally, we discuss future perspectives pertaining to the enzymatic production of L-tyrosine derivatives.Key points• Summary of recent advances in enzyme-catalyzed L-tyrosine derivatization.• Highlights of relevant strategies involved in L-tyrosine derivatives biosynthesis.• Future perspectives on industrial applications of L-tyrosine derivatization.
Collapse
|
39
|
Liu W, Wu C, Jewett MC, Li J. Cell‐free protein synthesis enables one‐pot cascade biotransformation in an aqueous‐organic biphasic system. Biotechnol Bioeng 2020; 117:4001-4008. [DOI: 10.1002/bit.27541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Wan‐Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology Northwestern University Evanston Illinois
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai China
| |
Collapse
|
40
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
41
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
42
|
Schwaiger KN, Voit A, Dobiašová H, Luley C, Wiltschi B, Nidetzky B. Plasmid Design for Tunable Two-Enzyme Co-Expression Promotes Whole-Cell Production of Cellobiose. Biotechnol J 2020; 15:e2000063. [PMID: 32668097 DOI: 10.1002/biot.202000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Indexed: 12/30/2022]
Abstract
Catalyst development for biochemical cascade reactions often follows a "whole-cell-approach" in which a single microbial cell is made to express all required enzyme activities. Although attractive in principle, the approach can encounter limitations when efficient overall flux necessitates precise balancing between activities. This study shows an effective integration of major design strategies from synthetic biology to a coherent development of plasmid vectors, enabling tunable two-enzyme co-expression in E. coli, for whole-cell-production of cellobiose. An efficient transformation of sucrose and glucose into cellobiose by a parallel (countercurrent) cascade of disaccharide phosphorylases requires the enzyme co-expression to cope with large differences in specific activity of cellobiose phosphorylase (14 U mg-1 ) and sucrose phosphorylase (122 U mg-1 ). Mono- and bicistronic co-expression strategies controlling transcription, transcription-translation coupling or plasmid replication are analyzed for effect on activity and stable producibility of the whole-cell-catalyst. A key role of bom (basis of mobility) for plasmid stability dependent on the ori is reported and the importance of RBS (ribosome binding site) strength is demonstrated. Whole cell catalysts show high specific rates (460 µmol cellobiose min-1 g-1 dry cells) and performance metrics (30 g L-1 ; ∼82% yield; 3.8 g L-1 h-1 overall productivity) promising for cellobiose production.
Collapse
Affiliation(s)
- Katharina N Schwaiger
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Alena Voit
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Hana Dobiašová
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Christiane Luley
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Birgit Wiltschi
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Bernd Nidetzky
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, TU Graz, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| |
Collapse
|
43
|
Li RJ, Zhang Z, Acevedo-Rocha CG, Zhao J, Li A. Biosynthesis of organic molecules via artificial cascade reactions based on cytochrome P450 monooxygenases. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
44
|
Zhou Y, Sekar BS, Wu S, Li Z. Benzoic acid production via cascade biotransformation and coupled fermentation‐biotransformation. Biotechnol Bioeng 2020; 117:2340-2350. [DOI: 10.1002/bit.27366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| |
Collapse
|
45
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
46
|
Velasco‐Lozano S, Santiago‐Arcos J, Mayoral JA, López‐Gallego F. Co‐immobilization and Colocalization of Multi‐Enzyme Systems for the Cell‐Free Biosynthesis of Aminoalcohols. ChemCatChem 2020. [DOI: 10.1002/cctc.201902404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Susana Velasco‐Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas Instituto de Sïntesis Química y Catálisis Homogénea (ISQCH-CSIC)University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Javier Santiago‐Arcos
- Heterogeneous biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
| | - José A. Mayoral
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas Instituto de Sïntesis Química y Catálisis Homogénea (ISQCH-CSIC)University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Fernando López‐Gallego
- Heterogeneous biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
47
|
Zhong C, Duić B, Bolivar JM, Nidetzky B. Three‐Enzyme Phosphorylase Cascade Immobilized on Solid Support for Biocatalytic Synthesis of Cello−oligosaccharides. ChemCatChem 2020. [DOI: 10.1002/cctc.201901964] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Božidar Duić
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
48
|
Song JW, Seo JH, Oh DK, Bornscheuer UT, Park JB. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01802f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents the key factors to construct a productive whole-cell biocatalytic cascade exemplified for the biotransformation of renewable fatty acids.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Doek-Kun Oh
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Uwe T. Bornscheuer
- Institute of Biochemistry
- Department of Biotechnology & Enzyme Catalysis
- Greifswald University
- 17487 Greifswald
- Germany
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering
| |
Collapse
|
49
|
Chen Z, Li Z, Li F, Wang M, Wang N, Gao XD. Cascade synthesis of rare ketoses by whole cells based on L-rhamnulose-1-phosphate aldolase. Enzyme Microb Technol 2019; 133:109456. [PMID: 31874684 DOI: 10.1016/j.enzmictec.2019.109456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases demonstrate important values in the production of rare ketoses due to their unique stereoselectivities. As a specific example, we developed an efficient Escherichia coli whole-cell biocatalytic cascade system in which rare ketoses were produced from abundant glycerol and catalyzed by four enzymes based on L-rhamnulose-1-phosphate aldolase (RhaD). For the semicontinuous bioconversion in which D-glyceraldehyde was continuously added, once D-glyceraldehyde was consumed, the final yields of D-sorbose and D-psicose were 15.30 g/L and 6.35 g/L, respectively. Moreover, the maximum conversion rate and productivity of D-sorbose and D-psicose were 99% and 1.11 g/L/h at 8 h, respectively. When L-glyceraldehyde was used instead of the D-isomer, the final yield of L-fructose was 16.80 g/L. Furthermore, the maximum conversion rate and productivity of L-fructose were 95% and 1.08 g/L/h at 8 h, respectively. This synthetic platform was also compatible with other various aldehydes, which allowed the production of many other high-value chemicals from glycerol.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Fen Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Mayan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
50
|
Lorillière M, Guérard‐Hélaine C, Gefflaut T, Fessner W, Clapés P, Charmantray F, Hecquet L. Convergent
in situ
Generation of Both Transketolase Substrates
via
Transaminase and Aldolase Reactions for Sequential One‐Pot, Three‐Step Cascade Synthesis of Ketoses. ChemCatChem 2019. [DOI: 10.1002/cctc.201901756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Lorillière
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| | - Christine Guérard‐Hélaine
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| | - Thierry Gefflaut
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Darmstadt 64287 Germany
| | - Pere Clapés
- Biotransformation and Bioactive Molecules GroupInstituto de Química Avanzada de Cataluña IQAC-CSIC Jordi Barcelona 08034 Spain
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| |
Collapse
|