1
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
2
|
Valikhani D, Bolivar JM, Pelletier JN. An Overview of Cytochrome P450 Immobilization Strategies for Drug Metabolism Studies, Biosensing, and Biocatalytic Applications: Challenges and Opportunities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Donya Valikhani
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
| | - Juan M. Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., 28040 Madrid, Spain
| | - Joelle N. Pelletier
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit ave, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
3
|
Alvisi N, Gutiérrez-Mejía FA, Lokker M, Lin YT, de Jong AM, van Delft F, de Vries R. Self-Assembly of Elastin-like Polypeptide Brushes on Silica Surfaces and Nanoparticles. Biomacromolecules 2021; 22:1966-1979. [PMID: 33871996 PMCID: PMC8154268 DOI: 10.1021/acs.biomac.1c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over the placement and activity of biomolecules on solid surfaces is a key challenge in bionanotechnology. While covalent approaches excel in performance, physical attachment approaches excel in ease of processing, which is equally important in many applications. We show how the precision of recombinant protein engineering can be harnessed to design and produce protein-based diblock polymers with a silica-binding and highly hydrophilic elastin-like domain that self-assembles on silica surfaces and nanoparticles to form stable polypeptide brushes that can be used as a scaffold for later biofunctionalization. From atomic force microscopy-based single-molecule force spectroscopy, we find that individual silica-binding peptides have high unbinding rates. Nevertheless, from quartz crystal microbalance measurements, we find that the self-assembled polypeptide brushes cannot easily be rinsed off. From atomic force microscopy imaging and bulk dynamic light scattering, we find that the binding to silica induces fibrillar self-assembly of the peptides. Hence, we conclude that the unexpected stability of these self-assembled polypeptide brushes is at least in part due to peptide-peptide interactions of the silica-binding blocks at the silica surface.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Fabiola A Gutiérrez-Mejía
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Meike Lokker
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Yu-Ting Lin
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Arthur M de Jong
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
4
|
Nöth M, Hussmann L, Belthle T, El-Awaad I, Davari MD, Jakob F, Pich A, Schwaneberg U. MicroGelzymes: pH-Independent Immobilization of Cytochrome P450 BM3 in Microgels. Biomacromolecules 2020; 21:5128-5138. [PMID: 33206503 DOI: 10.1021/acs.biomac.0c01262] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microgels are an emerging class of "ideal" enzyme carriers because of their chemical and process stability, biocompatibility, and high enzyme loading capability. In this work, we synthesized a new type of permanently positively charged poly(N-vinylcaprolactam) (PVCL) microgel with 1-vinyl-3-methylimidazolium (quaternization of nitrogen by methylation of N-vinylimidazole moieties) as a comonomer (PVCL/VimQ) through precipitation polymerization. The PVCL/VimQ microgels were characterized with respect to their size, charge, swelling degree, and temperature responsiveness in aqueous solutions. P450 monooxygenases are usually challenging to immobilize, and often, high activity losses occur after the immobilization (in the case of P450 BM3 from Bacillus megaterium up to 100% loss of activity). The electrostatic immobilization of P450 BM3 in permanently positively charged PVCL/VimQ microgels was achieved without the loss of catalytic activity at the pH optimum of P450 BM3 (pH 8; ∼9.4 nmol 7-hydroxy-3-carboxy coumarin ethyl ester/min for free and immobilized P450 BM3); the resulting P450-microgel systems were termed P450 MicroGelzymes (P450 μ-Gelzymes). In addition, P450 μ-Gelzymes offer the possibility of reversible ionic strength-triggered release and re-entrapment of the biocatalyst in processes (e.g., for catalyst reuse). Finally, a characterization of the potential of P450 μ-Gelzymes to provide resistance against cosolvents (acetonitrile, dimethyl sulfoxide, and 2-propanol) was performed to evaluate the biocatalytic application potential.
Collapse
Affiliation(s)
- Maximilian Nöth
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany
| | - Larissa Hussmann
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Thomke Belthle
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Islam El-Awaad
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany.,Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Felix Jakob
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany.,Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraβe 50, 52074 Aachen, Germany
| |
Collapse
|
5
|
Frank R, Prönnecke C, Azendorf R, Jahnke HG, Beck-Sickinger AG, Robitzki AA. Advanced 96-microtiter plate based bioelectrochemical platform reveals molecular short cut of electron flow in cytochrome P450 enzyme. LAB ON A CHIP 2020; 20:1449-1460. [PMID: 32219236 DOI: 10.1039/c9lc01220f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In bioelectrocatalysis, immobilised redox enzymes are activated in a bioelectronic interface without redox equivalents such as NADPH, thus enabling heterogeneous flow chemistry. The functional contact between enzyme and electrode requires a high degree of optimisation regarding choice of electrode material, electrode pre-treatment, enzyme immobilisation and reaction conditions. So far, however, there are no systems that can easily enable an optimisation procedure at a higher throughput. Here, we present an advanced platform with a vertical divided cell architecture in conjunction with a developed 96-multipotentiostat to be able to drive redox enzymes in 96 well microtiter plate based multielectrode arrays. This platform controls 96 independent three-electrode setups with arbitrary working electrode materials. We demonstrate its applicability in a mutation study of cytochrome P450 BM3 using indium tin oxide as electrode material and the 7-ethoxycoumarin product quantification assay. We show that the bioelectrocatalytic activity of P450 BM3 can be amplified when the cofactor FAD is erased from the enzyme by a single point mutation, so that FMN becomes the first electron entry point. Bioelectrocatalysis thus offers an approach to enzyme simplification as a remedy for the inherent instability of self-sufficient cytochrome P450 enzymes. In addition, we examined native and artificial enzyme activation with respect to ionic strength and buffer composition. The optimal conditions of the activation types differ substantially from each other and exhibit a new molecular facet in enzyme characteristics. In a proof-of-principle we demonstrate that the platform is also compatible with raw cell extracts, thus opening the door for random mutagenesis screenings.
Collapse
Affiliation(s)
- Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | - Christoph Prönnecke
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | - Ronny Azendorf
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | | | - Andrea A Robitzki
- Centre for Biotechnology and Biomedicine, Molecular biological-biochemical Processing Technology, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany.
| |
Collapse
|
6
|
Mie Y, Yasutake Y, Takayama H, Tamura T. Electrochemically boosted cytochrome P450 reaction that efficiently produces 25-hydroxyvitamin D3. J Catal 2020. [DOI: 10.1016/j.jcat.2020.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Apitius L, Rübsam K, Jakesch C, Jakob F, Schwaneberg U. Ultrahigh‐throughput screening system for directed polymer binding peptide evolution. Biotechnol Bioeng 2019; 116:1856-1867. [DOI: 10.1002/bit.26990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Lina Apitius
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- RWTH Aachen UniversityAachen Germany
| | - Kristin Rübsam
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
| | | | - Felix Jakob
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- RWTH Aachen UniversityAachen Germany
| | - Ulrich Schwaneberg
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- RWTH Aachen UniversityAachen Germany
| |
Collapse
|
8
|
Islam S, Apitius L, Jakob F, Schwaneberg U. Targeting microplastic particles in the void of diluted suspensions. ENVIRONMENT INTERNATIONAL 2019; 123:428-435. [PMID: 30622067 DOI: 10.1016/j.envint.2018.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 05/22/2023]
Abstract
Accumulation of microplastic in the environment and food chain will be a grand challenge for our society. Polyurethanes are widely used synthetic polymers in medical (e.g. catheters) and industrial products (especially as foams). Polyurethane is not abundant in nature and only a few microbial strains (fungi and bacteria) and enzymes (polyurethaneases and cutinases) have been reported to efficiently degrade polyurethane. Notably, in nature a long period of time (from 50 to >100 years depending on the literature) is required for degradation of plastics. Material binding peptides (e.g. anchor peptides) bind strongly to polymers such as polypropylene, polyethylene terephthalate, and polyurethane and can target specifically polymers. In this study we report the fusion of the anchor peptide Tachystatin A2 to the bacterial cutinase Tcur1278 which accelerated the degradation of polyester-polyurethane nanoparticles by a factor of 6.6 in comparison to wild-type Tcur1278. Additionally, degradation half-lives of polyester-polyurethane nanoparticles were reduced from 41.8 h to 6.2 h (6.7-fold) in a diluted polyester-polyurethane suspension (0.04% w/v).
Collapse
Affiliation(s)
- Shohana Islam
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Lina Apitius
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Felix Jakob
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
9
|
|
10
|
|
11
|
Wolf Prize in Chemistry: M. Fujita und O. M. Yaghi / Albrecht-Kossel-Preis: A. Beck-Sickinger. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Wolf Prize in Chemistry: M. Fujita and O. M. Yaghi / Albrecht Kossel Prize: A. Beck-Sickinger. Angew Chem Int Ed Engl 2018; 57:3287. [DOI: 10.1002/anie.201802237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|