1
|
Guo K, Xu D, Xu L, Li Y, Tang Y. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications. MATERIALS HORIZONS 2023; 10:1234-1263. [PMID: 36723011 DOI: 10.1039/d2mh01408d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inorganic nanodendrites (NDs) have become a kind of advanced nanomaterials with broad application prospects because of their unique branched architecture. The structural characteristics of nanodendrites include highly branched morphology, abundant tips/edges and high-index crystal planes, and a high atomic utilization rate, which give them great potential for usage in the fields of electrocatalysis, sensing, and therapeutics. Therefore, the rational design and controlled synthesis of inorganic (especially noble metals) nanodendrites have attracted widespread attention nowadays. The development of synthesis strategies and characterization methodology provides unprecedented opportunities for the preparation of abundant nanodendrites with interesting crystallographic structures, morphologies, and application performances. In this review, we systematically summarize the formation mechanisms of noble metal nanodendrites reported in recent years, with a special focus on surfactant-mediated mechanisms. Some typical examples obtained by innovative synthetic methods are then highlighted and recent advances in the application of noble metal nanodendrites are carefully discussed. Finally, we conclude and present the prospects for the future development of nanodendrites. This review helps to deeply understand the synthesis and application of noble metal nanodendrites and may provide some inspiration to develop novel functional nanomaterials (especially electrocatalysts) with enhanced performance.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Lima VS, Almeida TS, De Andrade AR. Glycerol Electro-Oxidation in Alkaline Medium with Pt-Fe/C Electrocatalysts Synthesized by the Polyol Method: Increased Selectivity and Activity Provided by Less Expensive Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1173. [PMID: 37049266 PMCID: PMC10096876 DOI: 10.3390/nano13071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
We have investigated platinum catalysts containing iron as a modifier to obtain catalysts with superior electrocatalytic activity toward glycerol electro-oxidation in an alkaline medium. The electrocatalysts, supported on carbon Vulcan, were synthesized by the polyol method. The physicochemical characterization data showed that the metals were well distributed on the carbon support and had small particle size (2 nm). The Pt:Fe metal ratio differed from the nominal composition, indicating that reducing iron with platinum was difficult, even though some parameters of the synthesis process were changed. Electrochemical analyses revealed that PtFe/C was more active and stable than commercial Pt/C was, and analysis of the electrolysis by-products showed that iron addition to Pt/C boosted the glycerol conversion and selectivity for glyceric acid formation.
Collapse
Affiliation(s)
- Vanderlei S. Lima
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Thiago S. Almeida
- Departamento de Química, Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, Iturama 38280-000, MG, Brazil;
| | - Adalgisa R. De Andrade
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
- UNESP, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara 14800-900, SP, Brazil
| |
Collapse
|
3
|
Zhao M, Holder J, Chen Z, Xie M, Cao Z, Chi M, Xia Y. Facile Synthesis of Pt Icosahedral Nanocrystals with Controllable Sizes for the Evaluation of Size‐Dependent Activity toward Oxygen Reduction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ming Zhao
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Joseph Holder
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Zitao Chen
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 USA
| | - Minghao Xie
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Zhenming Cao
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 USA
| | - Younan Xia
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| |
Collapse
|
4
|
Xie R, Lu S, Deng Y, Mei S, Cao X, Zhou L, Lan C, Gu H. Facile Synthesis of Sea-Urchin-Like Pt and Pt/Au Nanodendrites and Their Enhanced Electrocatalytic Properties. Inorg Chem 2019; 58:5375-5379. [PMID: 30977372 DOI: 10.1021/acs.inorgchem.8b03321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruigang Xie
- Guangxi Colleges and Universities Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi & College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
| | - Shuanglong Lu
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yaoyao Deng
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Sujuan Mei
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xueqin Cao
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lingli Zhou
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Cuiling Lan
- Guangxi Colleges and Universities Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi & College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
| | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Li Z, Chen Y, Fu G, Chen Y, Sun D, Lee JM, Tang Y. Porous PdRh nanobowls: facile synthesis and activity for alkaline ethanol oxidation. NANOSCALE 2019; 11:2974-2980. [PMID: 30693934 DOI: 10.1039/c8nr09482a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optimizing structure and composition with respect to electrocatalytic performance is critical to achieve outstanding Pd-based electrocatalysts. Herein, we have successfully developed a novel electrocatalyst of hollow and porous PdRh nanobowls (PdRh NBs) for the ethanol oxidation reaction (EOR) by using urea as a guiding surfactant. Under alkaline hydrothermal conditions, urea molecules can release bubbles (NH3 and CO2) that in turn guide the formation of PdRh nanobowls. The porous bowl-like structures of PdRh NBs expose abundant surface sites, which allows for increased collision frequency via confining reactants within open spaces. In regards to composition, the reason for introducing Rh is that not only is the redox potential of Rh approximate with that of Pd (beneficial to the formation of high PdRh alloy phase), but also it can effectively facilitate the breakage of C-C bond on the electrode surface (enhancing the total oxidation of ethanol to CO2). Benefiting from the compositional and structural advantages, the newly developed PdRh NBs exhibit significantly improved electrocatalytic activity for the EOR compared with those of the pure Pd NBs, PdRh nanoparticles (PdRh NPs) and commercial Pd black. These attributes might make them good anodic candidates for application in direct ethanol fuel cells.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | | | | | | | | | | | | |
Collapse
|