1
|
Vorobyeva SN, Bautina SA, Shekhovtsov NA, Nikolaenkova EB, Sukhikh TS, Golubeva YA, Klyushova LS, Krivopalov VP, Rakhmanova MI, Gourlaouen C, Bushuev MB. N^N^C-Cyclometalated rhodium(III) complexes with isomeric pyrimidine-based ligands: unveiling the impact of isomerism on structural motifs, luminescence and cytotoxicity. Dalton Trans 2024; 53:8398-8416. [PMID: 38683023 DOI: 10.1039/d4dt00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The impact of isomerism of pyrimidine-based ligands and their rhodium(III) complexes with regard to their structures and properties was investigated. Two isomeric ligands, 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2,5-diphenylpyrimidine (HL2,5) and 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2,6-diphenylpyrimidine (HL2,6), were synthesized. The ligands differ by the degree of steric bulk: the molecular structure of HL2,5 is more distorted due to presence of pyrazolyl and phenyl groups in the neighbouring positions 4 and 5 of the pyrimidine ring. The complexation of HL2,5 and HL2,6 with RhCl3 leads to the sp2 C-H bond activation, resulting in the isolation of two complexes, [RhL2,5(Solv)Cl2]·nEtOH and [RhL2,6(Solv)Cl2]·nEtOH (Solv = H2O, EtOH), with the deprotonated forms of the pyrazolylpyrimidine molecules which coordinate the Rh3+ ion as N^N^C-tridentate ligands. According to DFT modelling, the mechanism of the deprotonation involves (i) the C-H bond breaking in the 2-phenyl group followed by the coordination of the C atom to the Rh atom, (ii) the protonation of coordinated chlorido ligand, (iii) the ejection of the HCl molecule and (iv) the coordination of the H2O molecule. The ligand isomerism has an impact on emission properties and cytotoxicity of the complexes. Although the excited states of the complexes effectively deactivate through S0/T1 and S0/S1 crossings associated with the cleavage of the weak H2O ligands upon excitation, the [RhL2,5(Solv)Cl2]·nEtOH complex appeared to be emissive in the solid state, while [RhL2,6(Solv)Cl2]·nEtOH is non-emissive at all. The complexes show significant cytotoxic activity against cancerous HepG2 and Hep2 cell lines, with the [RhL2,6(Solv)Cl2]·nEtOH complex being more active than its isomer [RhL2,5(Solv)Cl2]·nEtOH. On the other hand, noticeable cytotoxicity of the latter against HepG2 is supplemented by its non-toxicity against non-cancerous MRC-5 cells.
Collapse
Affiliation(s)
- Sofia N Vorobyeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Sof'ya A Bautina
- Novosibirsk State University, 1, Pirogova str., Novosibirsk 630090, Russia
| | - Nikita A Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Elena B Nikolaenkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Yuliya A Golubeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Centre of Fundamental and Translational Medicine (IMBB FRC FTM), 2/12, Timakova str., 630060, Novosibirsk, Russia
| | - Viktor P Krivopalov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Marianna I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France
| | - Mark B Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
Shah TA, Sarkar T, Kar S, Maharana PK, Talukdar K, Punniyamurthy T. Transition-Metal-Catalyzed Directed C-H Functionalization in/on Water. Chem Asian J 2024; 19:e202300815. [PMID: 37932013 DOI: 10.1002/asia.202300815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Directing group assisted C-H bond functionalization using transition-metal-catalysis has emerged as a reliable synthetic tool for the construction of regioselective carbon-carbon/heteroatom bonds. Off late, "in/on water directed transition-metal-catalysis", though still underdeveloped, has appeared as one of the prominent themes in sustainable organic chemistry. This article covers the advancements, mechanistic insights and application of the sustainable directed C-H bond functionalization of (hetero)arenes in/on water in the presence of transition-metal-catalysis.
Collapse
Affiliation(s)
- Tariq A Shah
- Department of Chemistry and Advanced Material Chemistry Center (AMCC), Khalifa University, PO Box, 127788, Abu Dhabi, U.A.E
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | | |
Collapse
|
3
|
Danagulyan GG, Panosyan HA, Gharibyan VK, Hasratyan AH. A Simple and Easily Implemented Method for the Regioselective Introduction of Deuterium into Azolo[1,5- a]pyrimidines Molecules. Molecules 2023; 28:molecules28062869. [PMID: 36985841 PMCID: PMC10054722 DOI: 10.3390/molecules28062869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A method for the technically easy-to-implement synthesis of deuterium-labeled pyrazolo[1,5-a]pyrimidines and 1,2,4-triazolo[1,5-a]pyrimidines have been developed. The regioselectivity of such transformations has been shown. 1H NMR and mass spectrometric methods have proved the quantitative nature of such transformations and the kinetics of deuterium exchange has been studied. Spectrally, at different temperatures (+30 °C, -10 °C and -15 °C), the kinetics of the process was studied both in CD3OD and in deuterated alkali.
Collapse
Affiliation(s)
- Gevorg G Danagulyan
- Laboratory of Bioactive Azaheterocycles, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Hovsep Emin Str. 123, Yerevan 0051, Armenia
- Scientific and Technological Center of Organic and Pharmaceutical Chemistry, The National Academy of Sciences of the Republic of Armenia, Azatutyan Ave. 26, Yerevan 0014, Armenia
| | - Henrik A Panosyan
- Scientific and Technological Center of Organic and Pharmaceutical Chemistry, The National Academy of Sciences of the Republic of Armenia, Azatutyan Ave. 26, Yerevan 0014, Armenia
| | - Vache K Gharibyan
- Laboratory of Bioactive Azaheterocycles, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Hovsep Emin Str. 123, Yerevan 0051, Armenia
| | - Ani H Hasratyan
- Laboratory of Bioactive Azaheterocycles, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Hovsep Emin Str. 123, Yerevan 0051, Armenia
- Scientific and Technological Center of Organic and Pharmaceutical Chemistry, The National Academy of Sciences of the Republic of Armenia, Azatutyan Ave. 26, Yerevan 0014, Armenia
| |
Collapse
|
4
|
Al Mamari HH, Grošelj U, Požgan F, Brodnik H. Regioselective Ru(II)/Pd(0) Dual Catalysis: One-Pot C-H Diarylation of Five-Membered Heterocyclic Derivatives. J Org Chem 2021; 86:3138-3151. [PMID: 33512169 PMCID: PMC7901663 DOI: 10.1021/acs.joc.0c01983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 11/29/2022]
Abstract
Herein, we report a one-pot site-selective dual metal catalyzed C-H diarylation reaction for the synthesis of multiarylated thiophene and furan derivatives in yields up to 92%. The regioselectivity of the developed methodology was achieved with the sequential use of two metal catalysts within a single vessel, starting with a Ru(II)-catalyzed C3 arylation assisted by an azine directing group, followed by a Pd(0)-catalyzed C-H functionalization on the C5-position of the five-membered heterocycle. Furthermore, the kinetic studies support that the position of the nitrogen atom within the azine moiety exhibits an evident effect on the efficiency of the ruthenium-catalyzed arylation step.
Collapse
Affiliation(s)
- Hamad H. Al Mamari
- Department of Chemistry, College of Science,
Sultan Qaboos University, PO Box 36, Al Khoudh, 123 Muscat,
Oman
| | - Uroš Grošelj
- Department of Organic Chemistry, Faculty of Chemistry
and Chemical Technology, University of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Franc Požgan
- Department of Organic Chemistry, Faculty of Chemistry
and Chemical Technology, University of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Helena Brodnik
- Department of Organic Chemistry, Faculty of Chemistry
and Chemical Technology, University of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Conformationally Driven Ru(II)-Catalyzed Multiple ortho-C–H Bond Activation in Diphenylpyrazine Derivatives in Water: Where Is the Limit? Catalysts 2020. [DOI: 10.3390/catal10040421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ru(II)/carboxylate/PPh3 catalyst system enabled the preparation of highly conjugated pyrazine derivatives in water under microwave irradiation. Both nitrogen atoms efficiently dictated cleavage of the ortho-C–H bonds in both benzene rings of 2,3-diphenylpyrazine substrates through chelation assistance. In conformationally more flexible diphenyldihydropyrazine 1, the arylation of four ortho-C–H bonds was possible, while in the aromatic analog 2, the triarylation was the limit.
Collapse
|
6
|
Drev M, Grošelj U, Ledinek B, Perdih F, Svete J, Štefane B, Požgan F. Ruthenium(II)-Catalyzed Microwave-Promoted Multiple C-H Activation in Synthesis of Hexa(heteroaryl)benzenes in Water. Org Lett 2018; 20:5268-5273. [PMID: 30130120 DOI: 10.1021/acs.orglett.8b02169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of hexa(heteroaryl)benzenes were synthesized by the Ru(II)-carboxylate-catalyzed multiple C-H activation of benzenes carrying pyridyl, pyrimidyl, or pyrazolyl directing groups using N-heteroaryl bromides as coupling partners. The reactions proceeded with high selectivity under microwave irradiation in water. Iterative penta-arylation could be implemented via activation of C-H bonds of generated intermediates by cascade chelation assistance of in situ installed pyridyl groups. This strategy provides multidentate ligands for selective complexation of transition metals and potential building of photoredox systems.
Collapse
Affiliation(s)
- Miha Drev
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Uroš Grošelj
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Bine Ledinek
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Franc Požgan
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|