1
|
Jiang W, Wu Y, Su R, Xu W, Yang W, Qiu Y, Cai Y, Wang C, Hu L, Gu W, Zhu C. Grain-Boundary-Rich Ceria Metallene Nanozyme with Abundant Metal Site Pairs Boosts Phosphatase-like Activity. NANO LETTERS 2024; 24:9635-9642. [PMID: 39077994 DOI: 10.1021/acs.nanolett.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Natural phosphatases featuring paired metal sites inspire various advanced nanozymes with phosphatase-like activity as alternatives in practical applications. Numerous efforts to create point defects show limited metal site pairs, further resulting in insufficient activity. However, it remains a grand challenge to accurately engineer abundant metal site pairs in nanozymes. Herein, we report a grain-boundary-rich ceria metallene nanozyme (GB-CeO2) with phosphatase-like activity. Grain boundaries acting as the line or interfacial defects can effectively increase the content of Ce4+/Ce3+ site pairs to 72.28%, achieving a 49.28-fold enhancement in activity. Furthermore, abundant grain boundaries optimize the band structure to assist the photoelectron transfer under irradiation, which further increases the content of metal site pairs to 88.96% and finally realizes a 114.39-fold enhanced activity over that of CeO2 without irradiation. Given the different inhibition effects of pesticides on catalysts with and without irradiation, GB-CeO2 was successfully applied to recognize mixed toxic pesticides.
Collapse
Affiliation(s)
- Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Rina Su
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yiwei Qiu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, People's Republic of China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
2
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Singh R, Umapathi A, Patel G, Patra C, Malik U, Bhargava SK, Daima HK. Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158771. [PMID: 36108853 DOI: 10.1016/j.scitotenv.2022.158771] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Nanozymes are defined as nanomaterials exhibiting enzyme-like properties, and they possess both catalytic functions and nanomaterial's unique physicochemical characteristics. Due to the excellent stability and improved catalytic activity in comparison to natural enzymes, nanozymes have established a wide base for applications in environmental pollutants monitoring and remediation. Nanozymes have been applied in the detection of heavy metal ions, molecules, and organic compounds, both quantitatively and qualitatively. Additionally, within the natural environment, nanozymes can be employed for the degradation of organic and persistent pollutants such as antibiotics, phenols, and textile dyes. Further, the potential sphere of applications for nanozymes traverses from indoor air purification to anti-biofouling agents, and even they show promise in combatting pathogenic bacteria. However, nanozymes may have inherent toxicity, which can restrict their widespread utility. Thus, it is important to evaluate and monitor the interaction and transformation of nanozymes towards biosphere damage when employed within the natural environment in a cradle-to-grave manner, to assure their utmost safety. In this context, various studies have concluded that the green synthesis of nanozymes can efficiently overcome the toxicity limitations in real life applications, and nanozymes can be well utilized in the sensing and degradation of several toxic pollutants including metal ions, pesticides, and chemical warfare agents. In this seminal review, we have explored the great potential of nanozymes, whilst addressing a range of concerns, which have often been overlooked and currently restrict widespread applications and commercialization of nanozymes.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, 252059, Shandong, China
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Gaurang Patel
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Chayan Patra
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Uzma Malik
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne 3000, Victoria, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India.
| |
Collapse
|
4
|
Li QZ, Fan H, Wang Z, Zheng JJ, Fan K, Yan X, Gao X. Mechanism and Kinetics-Guided Discovery of Nanometal Scissors to Cut Phosphoester Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| |
Collapse
|
5
|
Lyu Y, Morillas-Becerril L, Mancin F, Scrimin P. Hydrolytic cleavage of nerve agent simulants by gold nanozymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125644. [PMID: 33773245 DOI: 10.1016/j.jhazmat.2021.125644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although banned by the Chemical Weapons Convention, organophosphorus nerve agents are still available and have been used in regional wars, terroristic attacks or for other crtaiminal purposes. Their degradation is of primary importance for the severe toxicity of these compounds. Here we report that gold nanoparticles passivated with thiolated molecules bearing 1,3,7-triazacyclononane and 1,3,7,10-tetraazacyclododecane ligands efficiently hydrolyze nerve agents simulants p-nitrophenyl diphenyl phosphate and methylparaoxon as transition metal complexes at 25 °C and pH 8 with half-lives of the order of a few minutes. Mechanistically, these catalysts show an enzyme-like behavior, hence they constitute an example of nanozymes. The catalytic site appears to involve a single metal ion and its recognition of the substrates is driven mostly by hydrophobic interactions. The ease of preparation and the mild conditions at which they operate, make these nanozymes appealing catalysts for the detoxification after contamination with organophosphorus nerve agents, particularly those poorly soluble in water.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
6
|
Wang Q, Yi X, Chen Y, Xiao Y, Zheng A, Chen JL, Peng Y. Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO
2
Near Room Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Quan Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Yu‐Cheng Chen
- Department of Mechanical Engineering City University of Hong Kong Hong Kong SAR China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Jian Lin Chen
- Department of Science School of Science and Technology The Open University of Hong Kong Hong Kong SAR China
| | - Yung‐Kang Peng
- Department of Chemistry City University of Hong Kong Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| |
Collapse
|
7
|
Wang Q, Yi X, Chen YC, Xiao Y, Zheng A, Chen JL, Peng YK. Electronic-State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO 2 Near Room Temperature. Angew Chem Int Ed Engl 2021; 60:16149-16155. [PMID: 33977664 DOI: 10.1002/anie.202104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Indexed: 11/10/2022]
Abstract
Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para-nitrophenyl phosphate (p-NPP) as a model compound, we demonstrate that TiO2 with a F-modified (001) surface can activate p-NPP dephosphorylation at temperatures as low as 40 °C. By probe-assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron-withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p-NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol-1 lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).
Collapse
Affiliation(s)
- Quan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu-Cheng Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jian Lin Chen
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong SAR, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
8
|
Lock and key-based nanozyme model to understand the substituent effect on the hydrolysis of organophosphate-based nerve agents by Zr-incorporated cerium oxide. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Factors Influencing the Activity of Nanozymes in the Cleavage of an RNA Model Substrate. Molecules 2019; 24:molecules24152814. [PMID: 31374998 PMCID: PMC6696475 DOI: 10.3390/molecules24152814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
A series of 2-nm gold nanoparticles passivated with different thiols all featuring at least one triazacyclonanone-Zn(II) complex and different flanking units (a second Zn(II) complex, a triethyleneoxymethyl derivative or a guanidinium of arginine of a peptide) were prepared and studied for their efficiency in the cleavage of the RNA-model substrate 2-hydroxypropyl-p-nitrophenyl phosphate. The source of catalysis for each of them was elucidated from the kinetic analysis (Michaelis–Menten profiles, pH dependence and kinetic isotope effect). The data indicated that two different mechanisms were operative: One involving two Zn(II) complexes and the other one involving a single Zn(II) complex and a flanking guanidinium cation. The mechanism based on a dinuclear catalytic site appeared more efficient than the one based on the cooperativity between a metal complex and a guanidinium.
Collapse
|
10
|
Zhou YH, Zhang Z, Patrick M, Yang F, Wei R, Cheng Y, Gu J. Cleaving DNA-model phosphodiester with Lewis acid-base catalytic sites in bifunctional Zr-MOFs. Dalton Trans 2019; 48:8044-8048. [PMID: 31094382 DOI: 10.1039/c9dt00246d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Organophosphates exist in many biomolecules. The design of artificial nucleases for efficient P-O bond cleavage is essential for the fields of genetic engineering and molecular biology. Herein, metal-organic frameworks (MOFs) with cooperatively isolated multi-catalytic active sites were utilized as heterogeneous catalysts for the hydrolytic cleavage of bis(p-nitrophenyl) phosphate (BNPP).
Collapse
Affiliation(s)
- Ying-Hua Zhou
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ghosh S, Roy P, Prasad S, Mugesh G. Crystal-facet-dependent denitrosylation: modulation of NO release from S-nitrosothiols by Cu 2O polymorphs. Chem Sci 2019; 10:5308-5318. [PMID: 31191887 PMCID: PMC6540961 DOI: 10.1039/c9sc01374a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023] Open
Abstract
Nitric oxide (NO), a gaseous small molecule generated by the nitric oxide synthase (NOS) enzymes, plays key roles in signal transduction. The thiol groups present in many proteins and small molecules undergo nitrosylation to form the corresponding S-nitrosothiols. The release of NO from S-nitrosothiols is a key strategy to maintain the NO levels in biological systems. However, the controlled release of NO from the nitrosylated compounds at physiological pH remains a challenge. In this paper, we describe the synthesis and NO releasing ability of Cu2O nanomaterials and provide the first experimental evidence that the nanocrystals having different crystal facets within the same crystal system exhibit different activities toward S-nitrosothiols. We used various imaging techniques and time-dependent spectroscopic measurements to understand the nature of catalytically active species involved in the surface reactions. The denitrosylation reactions by Cu2O can be carried out multiple times without affecting the catalytic activity.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India .
| | - Punarbasu Roy
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India .
| | - Sanjay Prasad
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India .
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India .
| |
Collapse
|
12
|
Singh S. Nanomaterials Exhibiting Enzyme-Like Properties (Nanozymes): Current Advances and Future Perspectives. Front Chem 2019; 7:46. [PMID: 30805331 PMCID: PMC6370642 DOI: 10.3389/fchem.2019.00046] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Biological enzymes are macromolecular catalysts that catalyze the biochemical reactions of the natural systems. Although each enzyme performs a particular function, however, holds several drawbacks, which limits its utilization in broad-spectrum applications. Natural enzymes require strict physiological conditions for performing catalytic functions. Their limited stability in harsh environmental conditions, the high cost of synthesis, isolation, and purification are some of the significant drawbacks. Therefore, as an alternative to natural enzymes, recently several strategies have been developed including the synthesis of molecules, complexes, and nanoparticles mimicking their intrinsic catalytic properties. Nanoparticles exhibiting the properties of an enzyme are termed as “nanozymes.” Nanozymes offer several advantages over natural enzymes, therefore, a rapid expansion of the development of artificial biocatalysts. These advantages include simple methods of synthesis, low cost, high stability, robust catalytic performance, and smooth surface modification of nanomaterials. In this context, nanozymes are tremendously being explored to establish a wide range of applications in biosensing, immunoassays, disease diagnosis and therapy, theranostics, cell/tissue growth, protection from oxidative stress, and removal of pollutants. Considering the importance of nanozymes, this article has been designed to comprehensively discuss the different enzyme-like properties, such as peroxidase, catalase, superoxide dismutase, and oxidase, exhibited by various nanoparticles.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| |
Collapse
|
13
|
Dong J, Lv H, Sun X, Wang Y, Ni Y, Zou B, Zhang N, Yin A, Chi Y, Hu C. A Versatile Self‐Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants. Chemistry 2018; 24:19208-19215. [DOI: 10.1002/chem.201804523] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/20/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Dong
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongjin Lv
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xiangrong Sun
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yin Wang
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yuanman Ni
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Zou
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Nan Zhang
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Anxiang Yin
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|