1
|
Huang C, Pang Y, Yuan XA, Jiang YY, Wang X, Liu P, Bi S, Xie J. Noncovalent Interaction- and Steric Effect-Controlled Regiodivergent Selectivity in Dimeric Manganese-Catalyzed Hydroarylation of Internal Alkynes: A Computational Study. J Org Chem 2022; 87:4215-4225. [PMID: 35262361 DOI: 10.1021/acs.joc.1c03058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective hydroarylation of internal alkynes catalyzed by a dimeric manganese complex provides a powerful strategy for the construction of multisubstituted alkenes. In this work, density functional theory (DFT) calculations and experimental studies were carried out to explore the mechanism and origin of regiodivergent hydroarylation of internal alkynes reported by our group. The results demonstrate that this reaction first proceeds via a bimetallic mechanism to generate the active catalyst that subsequently undergoes a monometallic mechanism to run the three-stage catalytic cycle: alkyne migratory insertion, protonation, and active catalyst regeneration. Alkyne migratory insertion is considered as the regioselectivity-determining step. Energy decomposition analyses on insertion transition states suggest that the interaction between the substrate and catalyst is mainly responsible for the observed exclusive γ-selectivity of 1a, while the deformation of these two sections induced by the sterically hindered phenyl group and aryl group accounts for the complete β-position arylation of 1e. The decrease of γ-selectivity with the regulation of a tertiary alcohol motif in 1a originates from the reduced noncovalent interaction. The computational results provide important insights into the origin of regiodivergent selectivities and useful information for further designing and adjusting the strategy in Mn-catalyzed alkyne hydroarylation.
Collapse
Affiliation(s)
- Congcong Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Yubo Pang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Xiaoyu Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Yuan XA, Huang C, Wang X, Liu P, Bi S, Li D. Computational Study on the Mechanisms and Origins of Selectivity in Hydroarylation of 1,3-Diyne Alcohol Catalyzed by Di- and Mononuclear Manganese Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Xiaoyu Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| | - Dan Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, China
| |
Collapse
|
3
|
Gao K, Xu M, Cai C, Ding Y, Chen J, Liu B, Xia Y. Cobalt-Catalyzed Reductive C-O Bond Cleavage of Lignin β-O-4 Ketone Models via In Situ Generation of the Cobalt-Boryl Species. Org Lett 2020; 22:6055-6060. [PMID: 32697919 DOI: 10.1021/acs.orglett.0c02117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient and mild method for reductive C-O bond cleavage of lignin β-O-4 ketone models was developed to afford the corresponding ketones and phenols with PDI-CoCl2 as the precatalyst and diboron reagent as the reductant. The synthetic utility of the methodology was demonstrated by depolymerization of a polymeric model and gram-scale transformation. Mechanistic studies suggested that this transformation involves steps of carbonyl insertion, 1,2-Brook type rearrangement, β-oxygen elimination, and rate-limiting regeneration of the catalytic active Co-B species.
Collapse
Affiliation(s)
- Kecheng Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Man Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Cheng Cai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanghao Ding
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bosheng Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Wang Y, Lan Y. Mechanism and origin of diastereoselectivity of N-heterocyclic carbene-catalyzed cross-benzoin reaction: A DFT study. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Zhu G, Shi W, Gao H, Zhou Z, Song H, Yi W. Chemodivergent Couplings of N-Arylureas and Methyleneoxetanones via Rh(III)-Catalyzed and Solvent-Controlled C–H Activation. Org Lett 2019; 21:4143-4147. [PMID: 31124685 DOI: 10.1021/acs.orglett.9b01333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guoxun Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wendi Shi
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Huacan Song
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
6
|
Ma X, Dang Y. Mechanistic Study of Manganese-Catalyzed C-H Bond Functionalizations: Factors Controlling the Competition between Hydroarylation and Cyclization. J Org Chem 2019; 84:1916-1924. [PMID: 30633518 DOI: 10.1021/acs.joc.8b02914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Mn-catalyzed C-H functionalization of indoles with allenes developed by Rueping and co-workers provides an efficient access to various alkenylated indoles and substituted pyrroloindolones. Herein, we present a systematic computational study to understand the mechanism and origins of substrate-controlled chemoselectivity of the C-H functionalization reactions (hydroarylation vs cascade cyclization). For the disubstituted allene system, the computed mechanism consists of three main phases: C-H activation, allene migratory insertion, and protonation giving the hydroarylation product. All of these steps are feasible, in agreement with the good yield under the mild experimental conditions. On the other hand, for the trisubstituted allene system, hydroarylation is suppressed due to the higher energy barrier for the protonation step arising from the disfavored ligand-substrate steric repulsions between the carboxide ligand and the substituent group in the allene substrate; our computational results demonstrate that, after the allene insertion leading to a seven-membered cyclometalated intermediate, it undergoes a reaction pathway involving sequential "ketone to enol" isomerization, a 1,4-heteroaryl shift, and β-methoxyl elimination giving the pyrroloindolone product. In contrast, this isomerization → heteroaryl shift → β-methoxyl elimination process is unworkable in the disubstituted allene system, because the protonation step takes place more favorably owing to the lack of ligand-substrate steric interactions. The findings taken together give an insight into the role of the ligand-substrate interactions in directing the competitive pathways and differentiating the energies of key transition states by steric repulsions.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Sciences , Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , People's Republic of China.,School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Sciences , Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , People's Republic of China
| |
Collapse
|