1
|
Tian Y, Gao M, Xie H, Xu S, Ye M, Liu Z. Spatiotemporal Heterogeneity of Temperature and Catalytic Activation within Individual Catalyst Particles. J Am Chem Soc 2024; 146:4958-4972. [PMID: 38334752 DOI: 10.1021/jacs.3c14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Temperature is a critical parameter in chemical conversion, significantly affecting the reaction kinetics and thermodynamics. Measuring temperature inside catalyst particles of industrial interest (∼micrometers to millimeters), which is crucial for understanding the evolution of chemical dynamics at catalytic active sites during reaction and advancing catalyst designs, however, remains a big challenge. Here, we propose an approach combining two-photon confocal microscopy and state-of-the-art upconversion luminescence (UL) imaging to measure the spatiotemporal-resolved temperature within individual catalyst particles in the industrially significant methanol-to-hydrocarbons reaction. Specifically, catalyst particles containing zeolites and functional nanothermometers were fabricated using microfluidic chips. Our experimental results directly demonstrate that the zeolite density and particle size can alter the temperature distribution within a single catalyst particle. Importantly, the observed temperature heterogeneity plays a decisive role in the activation of the reaction intermediate and the utilization of active sites. We expect that this work opens a venue for unveiling the reaction mechanism and kinetics within industrial catalyst particles by considering temperature heterogeneity.
Collapse
Affiliation(s)
- Yu Tian
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Mingbin Gao
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Hua Xie
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Shuliang Xu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Mao Ye
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| |
Collapse
|
2
|
Wild S, Mahr C, Rosenauer A, Risse T, Vasenkov S, Bäumer M. New Perspectives for Evaluating the Mass Transport in Porous Catalysts and Unfolding Macro- and Microkinetics. Catal Letters 2022; 153:3405-3422. [PMID: 37799191 PMCID: PMC10547662 DOI: 10.1007/s10562-022-04218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022]
Abstract
In this article we shed light on newly emerging perspectives to characterize and understand the interplay of diffusive mass transport and surface catalytic processes in pores of gas phase metal catalysts. As a case study, nanoporous gold, as an interesting example exhibiting a well-defined pore structure and a high activity for total and partial oxidation reactions is considered. PFG NMR (pulsed field gradient nuclear magnetic resonance) measurements allowed here for a quantitative evaluation of gas diffusivities within the material. STEM (scanning transmission electron microscopy) tomography furthermore provided additional insight into the structural details of the pore system, helping to judge which of its features are most decisive for slowing down mass transport. Based on the quantitative knowledge about the diffusion coefficients inside a porous catalyst, it becomes possible to disentangle mass transport contributions form the measured reaction kinetics and to determine the kinetic rate constant of the underlying catalytic surface reaction. In addition, predictions can be made for an improved effectiveness of the catalyst, i.e., optimized conversion rates. This approach will be discussed at the example of low-temperature CO oxidation, efficiently catalysed by npAu at 30 °C. The case study shall reveal that novel porous materials exhibiting well-defined micro- and mesoscopic features and sufficient catalytic activity, in combination with modern techniques to evaluate diffusive transport, offer interesting new opportunities for an integral understanding of catalytic processes. Graphical Abstract
Collapse
Affiliation(s)
- Stefan Wild
- Institute for Applied and Physical Chemistry, University of Bremen, 28359 Bremen, Germany
- MAPEX Center of Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Christoph Mahr
- MAPEX Center of Materials and Processes, University of Bremen, 28359 Bremen, Germany
- Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Andreas Rosenauer
- MAPEX Center of Materials and Processes, University of Bremen, 28359 Bremen, Germany
- Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Thomas Risse
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Sergey Vasenkov
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Marcus Bäumer
- Institute for Applied and Physical Chemistry, University of Bremen, 28359 Bremen, Germany
- MAPEX Center of Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
3
|
Gläser R, Kärger J, Ruthven DM. Diffusion in Nanoporous Solids in the Focus of IUPAC – A Tribute to Jens Weitkamp. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roger Gläser
- Universität Leipzig Fakultät für Chemie und Mineralogie Linnéstraße 3 04103 Leipzig Germany
| | - Jörg Kärger
- Universität Leipzig Fakultät für Physik und Geowissenschaften Linnéstraße 5 04103 Leipzig Germany
| | | |
Collapse
|
4
|
Affiliation(s)
- Jörg Kärger
- Universität Leipzig Fakultät für Physik und Geowissenschaften Linnéstraße 5 04103 Leipzig Germany
| |
Collapse
|
5
|
Peng P, Gao XH, Yan ZF, Mintova S. Diffusion and catalyst efficiency in hierarchical zeolite catalysts. Natl Sci Rev 2020; 7:1726-1742. [PMID: 34691504 PMCID: PMC8290962 DOI: 10.1093/nsr/nwaa184] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
The preparation of hierarchical zeolites with reduced diffusion limitation and enhanced catalyst efficiency has become a vital focus in the field of zeolites and porous materials chemistry within the past decades. This review will focus on the diffusion and catalyst efficiency of hierarchical zeolites and industrial catalysts. The benefits of diffusion and catalyst efficiency at two levels of hierarchies (zeolitic component level and industrial catalyst level) from a chemical reaction engineering point of view will be analysed. At zeolitic component level, three types of mesopores based on the strategies applied toward enhancing the catalyst effectiveness factor are presented: (i) 'functional mesopores' (raising effective diffusivity); (ii) 'auxiliary mesopores' (decreasing diffusion length); and (iii) 'integrated mesopores' (a combination thereof). At industrial catalyst level, location and interconnectivity among the constitutive components are revealed. The hierarchical pore interconnectivity in multi-component zeolite based industrial catalysts is exemplified by fluid catalytic cracking and bi-functional hydroisomerization catalysts. The rational design of industrial zeolite catalysts at both hierarchical zeolitic component and catalyst body levels can be fully comprehended using the advanced in situ and/or operando spectroscopic, microscopic and diffraction techniques.
Collapse
Affiliation(s)
- Peng Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
- Laboratory of Catalysis and Spectrochemistry (LCS), Normandy University, National Graduate School of Engineering of Caen (ENSICAEN), University of Caen (UNICAEN), French National Center for Scientific Research (CNRS), Caen 14000, France
| | - Xiong-Hou Gao
- Petrochemical Research Institute, China National Petroleum Company, Beijing 100195, China
| | - Zi-Feng Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
| | - Svetlana Mintova
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
- Laboratory of Catalysis and Spectrochemistry (LCS), Normandy University, National Graduate School of Engineering of Caen (ENSICAEN), University of Caen (UNICAEN), French National Center for Scientific Research (CNRS), Caen 14000, France
| |
Collapse
|