1
|
Dolas AJ, Yadav J, Nagare YK, Rangan K, Iype E, Kumar I. Enantioselective synthesis of α-(3-pyrrolyl)methanamines with an aza-tetrasubstituted center under metal-free conditions. Org Biomol Chem 2024; 23:98-102. [PMID: 39535059 DOI: 10.1039/d4ob01729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Construction of a chiral methanamine unit at the C3 position of pyrrole is highly desirable; nevertheless, it remains challenging due to its intrinsic electronic properties. Herein, we present an operationally straightforward and direct asymmetric approach for accessing α-(3-pyrrolyl)methanamines under benign organocatalytic conditions for the first time. The one-pot transformation proceeds smoothly through an amine-catalyzed direct Mannich reaction of succinaldehyde with various endo-cyclic imines, followed by a Paal-Knorr cyclization with a primary amine. Several N-H/alkyl/Ar α-(3-pyrrolyl)methanamines with an aza-tetrasubstituted center have been synthesized with good yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
2
|
Du Y, Li Q, Wang T, Wang YQ. Enantioselective Synthesis of Biphenyl-Bridged ϵ-Sultams by Organocatalytic Mannich Reactions of Cyclic N-Sulfonylimines with Unactivated Ketones. Chemistry 2024; 30:e202302904. [PMID: 37936501 DOI: 10.1002/chem.202302904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
A highly enantioselective Mannich reaction of biphenyl-bridged seven-membered cyclic N-sulfonylimines with methyl alkyl ketones is disclosed in this study. The reaction was performed under organocatalysis by using a quinine-derived primary amine as the catalyst in combination with a Brønsted acid as the co-catalyst. High yields (up to 89 %) and excellent enantioselectivities (up to 97 % ee) were observed. For methyl alkyl ketones containing a larger alkyl substituent, specific regioselective addition to the C=N bond is favored at the methyl group. On the contrary, ketones containing a smaller alkyl substituent or hydroxyacetone substrates gave major syn selective Mannich products at the methylene group.
Collapse
Affiliation(s)
- Ying Du
- Key Laboratory of Natural Medicine and, Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Qian Li
- Key Laboratory of Natural Medicine and, Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Tao Wang
- Key Laboratory of Natural Medicine and, Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - You-Qing Wang
- Key Laboratory of Natural Medicine and, Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
3
|
Zheng R, Xu A, Zhang T, Li P, Shi M, Dong S, Hu W, Qian Y. Asymmetric Acyclic 1,3-Difunctionalization of Vinyl Carbenes via Site-Selective Vinylogous Mannich-Type Interception of Oxonium Ylides. Org Lett 2023. [PMID: 37440433 DOI: 10.1021/acs.orglett.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
A novel and highly stereoselective acyclic 1,3-difunctionalization of vinyl metal carbene species has been developed via Rh(II)/chiral phosphoric acid co-catalyzed three-component reactions of vinyldiazoacetates with alcohols and imines. This innovative approach features excellent regio-, diastereo-, and enantioselectivities, demonstrating a broad scope and functional group compatibility. Notably, this is the first example of three-component asymmetric acyclic 1,3-difunctionalization with in situ-formed vinyl metal carbenes.
Collapse
Affiliation(s)
- Rimei Zheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Aimin Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Tianyuan Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Pei Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Maoqing Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shanliang Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yu Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
4
|
Vijayapritha S, Nithya P, Viswanathamurthi P, Raju S, Linert W. Efficient ruthenium(II) complex catalyzed N-alkylation of amines and β-alkylation of secondary alcohol via borrowing hydrogen methodology. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Yan J, Zheng L, Wang J, Liu X, Hu Y. Indoles Oxidative Ring-Opening/Cyclization Cascade with the 1,2-Diaminoarenes: Direct Synthesis of 2-Aryl-3-(2-aminoaryl)quinoxalines. J Org Chem 2022; 87:6347-6351. [PMID: 35420817 DOI: 10.1021/acs.joc.1c03120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A mild oxidative sequential tandem reaction was developed to rapidly generate 2-aryl-3-(2-aminoaryl) quinoxalines. This method exploited 2-substituted indoles as substrate to form quinoxalines in a one-pot reaction. The key to this tandem reaction was the formation of 3-iodoindoles, which underwent Kornblum-type oxidation with DMSO to generate active imine 2-substitued 3H-indol-3-ones. The active imines were captured in situ by 1,2-diaminobenzenes to construct diverse quinoxalines. The transformation can be accomplished at room temperature with excellent functional group tolerance.
Collapse
Affiliation(s)
- Jianwei Yan
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Linxia Zheng
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Jiangfei Wang
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Xiaomin Liu
- School of Pharmacy, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
6
|
Dabiri M, Lehi NF, Mohammadian R. Catalytic stereoselective Mannich-type reactions for construction of fluorinated compounds. Mol Divers 2021; 26:1267-1310. [PMID: 34228344 DOI: 10.1007/s11030-021-10235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/13/2021] [Indexed: 10/20/2022]
Abstract
For its unique role in developing and designing new bioactive materials and healthcare products, fluoro-organic compounds have attracted remarkable interest. Along with ever-increasing demand for a wider availability of fluorine-containing structural units, a large diversity of methods has been introduced to incorporate fluorine atoms specially in a stereoselective fashion. Among them, catalytic Mannich reaction can proceed with a broad variety of reactants and open clear paths for the synthesis of versatile amine synthons in the synthesis of natural product and pharmaceutical molecules. This review provides an overview of the employment of catalytic asymmetric Mannich reactions in the synthesis of fluorine-containing amine compounds and highlights the conceivable distinct mechanisms.
Collapse
Affiliation(s)
- Minoo Dabiri
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran.
| | - Noushin Farajinia Lehi
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran
| | - Reza Mohammadian
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran
| |
Collapse
|
7
|
Kim JH, Paul A, Ghiviriga I, Seidel D. α-C-H Bond Functionalization of Unprotected Alicyclic Amines: Lewis-Acid-Promoted Addition of Enolates to Transient Imines. Org Lett 2021; 23:797-801. [PMID: 33464093 PMCID: PMC7924990 DOI: 10.1021/acs.orglett.0c04024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Enolizable cyclic imines, obtained in situ from their corresponding lithium amides by oxidation with simple ketone oxidants, are readily alkylated with a range of enolates to provide mono- and polycyclic β-aminoketones in a single operation, including the natural product (±)-myrtine. Nitrile anions also serve as competent nucleophiles in these transformations, which are promoted by BF3 etherate. β-Aminoesters derived from ester enolates can be converted to the corresponding β-lactams.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anirudra Paul
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Bagheri I, Mohammadi L, Zadsirjan V, Heravi MM. Organocatalyzed Asymmetric Mannich Reaction: An Update. ChemistrySelect 2021. [DOI: 10.1002/slct.202003034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ilnaz Bagheri
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Leila Mohammadi
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
9
|
Paul A, Kim JH, Daniel SD, Seidel D. Diversification of Unprotected Alicyclic Amines by C-H Bond Functionalization: Decarboxylative Alkylation of Transient Imines. Angew Chem Int Ed Engl 2021; 60:1625-1628. [PMID: 32975859 PMCID: PMC7854982 DOI: 10.1002/anie.202011641] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Indexed: 12/13/2022]
Abstract
Despite extensive efforts by many practitioners in the field, methods for the direct α-C-H bond functionalization of unprotected alicyclic amines remain rare. A new advance in this area utilizes N-lithiated alicyclic amines. These readily accessible intermediates are converted to transient imines through the action of a simple ketone oxidant, followed by alkylation with a β-ketoacid under mild conditions to provide valuable β-amino ketones with unprecedented ease. Regioselective α'-alkylation is achieved for substrates with existing α-substituents. The method is further applicable to the convenient one-pot synthesis of polycyclic dihydroquinolones through the incorporation of a SN Ar step.
Collapse
Affiliation(s)
- Anirudra Paul
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jae Hyun Kim
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- Current address: College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Scott D Daniel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Chen XP, Hou KQ, Zhou F, Chan ASC, Xiong XF. Organocatalytic Asymmetric Synthesis of Benzothiazolopyrimidines via [4 + 2] Cyclization of 2-Benzothiazolimines and Aldehydes. J Org Chem 2021; 86:1667-1675. [DOI: 10.1021/acs.joc.0c02499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xue-Ping Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ke-Qiang Hou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Feng Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Nakashima T, Ohmatsu K, Ooi T. Mannich-type allylic C–H functionalization of enol silyl ethers under photoredox–thiol hybrid catalysis. Org Biomol Chem 2021; 19:141-145. [DOI: 10.1039/d0ob01862g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synergy of an Ir-based photosensitizer with mild oxidizing ability and a thiol catalyst enables efficient allylic C–H functionalization of enol silyl ethers with imines under visible light irradiation.
Collapse
Affiliation(s)
- Tsubasa Nakashima
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Chikusa
- Japan
| | - Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Chikusa
- Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Chikusa
- Japan
| |
Collapse
|
12
|
Paul A, Kim JH, Daniel SD, Seidel D. Diversification of Unprotected Alicyclic Amines by C−H Bond Functionalization: Decarboxylative Alkylation of Transient Imines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anirudra Paul
- Center for Heterocyclic Compounds, Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Jae Hyun Kim
- Center for Heterocyclic Compounds, Department of Chemistry University of Florida Gainesville FL 32611 USA
- Current address: College of Pharmacy Kangwon National University Chuncheon 24341 Republic of Korea
| | - Scott D. Daniel
- Center for Heterocyclic Compounds, Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
13
|
Affiliation(s)
- Xi‐Qiang Hou
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 People's Republic of China
| | - Da‐Ming Du
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 People's Republic of China
| |
Collapse
|
14
|
Duan HX, Zhang Y, Zhang ZZ, Wang YQ. C2-Symmetric 1,2-Diphenylethane-1,2-diamine-Derived Primary-Tertiary Diamine-Catalyzed Asymmetric Mannich Addition of Cyclic N-Sulfonyl Trifluoromethylated Ketimines. J Org Chem 2020; 85:11331-11339. [PMID: 32786629 DOI: 10.1021/acs.joc.0c01446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple chiral primary-tertiary diamine derived from C2-symmetric 1,2-diphenylethane-1,2-diamine as the organocatalyst in combination with the trifluoroacetic acid additive for the asymmetric Mannich reaction of cyclic N-sulfonyl trifluoromethylated ketimines and methyl ketones afforded the desired product with high enantioselectivity (73-96% ee). The reactions proceeded well for a variety of different substituted cyclic N-sulfonyl trifluoromethyl ketimines and various alkyl methyl ketones, providing access to diverse enantioenriched benzo-fused cyclic sulfamidate N-heterocycles bearing a trifluoromethylated α-tetrasubstituted carbon stereocenter. This study also investigated the diastereoselective reduction of the carbonyl group and ring cleavage reduction of the sulfamidate group of the corresponding Mannich product.
Collapse
Affiliation(s)
- Hui-Xin Duan
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yongna Zhang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhen-Zhen Zhang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - You-Qing Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
15
|
Ma S, Yu A, Zhang S, Zhang L, Meng X. Construction of [6-5-5-6-6] Pentacyclic Skeleton via a Phosphine-Catalyzed Domino Reaction and Mechanism Study. J Org Chem 2020; 85:7884-7895. [DOI: 10.1021/acs.joc.0c00566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shanshan Ma
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Shunguang Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China
| |
Collapse
|
16
|
Zhang Y, Li JK, Zhang FG, Ma JA. Catalytic Asymmetric Access to Noncanonical Chiral α-Amino Acids from Cyclic Iminoglyoxylates and Enamides. J Org Chem 2020; 85:5580-5589. [PMID: 32223256 DOI: 10.1021/acs.joc.0c00436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we describe an enantioselective Mannich reaction of cyclic iminoglyoxylates with enamides by virtue of chiral phosphoric acid catalysis in a one-pot manner. The wide substrate scope, mild reaction conditions, and constantly excellent enantioselectivities (>95% ee in most cases) render this protocol highly practical for the rapid construction of valuable noncanonical chiral α-amino-acid building blocks.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Jun-Kuan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P. R. of China
| |
Collapse
|
17
|
Cheng DJ, Li RQ, Zhang XS, Zhao L, Wang T, Shao YD. Diastereoselective Synthesis of Functionalized Indoline N
, O
-Aminals: Unexpected Water-Involved Cascade Reaction of 3 H
-Indoles and Oxazol-5-(4 H
)ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dao-Juan Cheng
- School of Chemistry and Chemical Engineering; Heze University; 274015 Heze People's Republic of China
| | - Rui-Qi Li
- School of Chemistry and Chemical Engineering; Heze University; 274015 Heze People's Republic of China
| | - Xing-Shuai Zhang
- School of Chemistry and Chemical Engineering; Heze University; 274015 Heze People's Republic of China
| | - Lin Zhao
- School of Chemistry and Chemical Engineering; Heze University; 274015 Heze People's Republic of China
| | - Tao Wang
- School of Chemistry and Chemical Engineering; Heze University; 274015 Heze People's Republic of China
| | - You-Dong Shao
- School of Chemistry and Chemical Engineering; Heze University; 274015 Heze People's Republic of China
| |
Collapse
|
18
|
Ray Choudhury A, Mukherjee S. Deconjugated butenolide: a versatile building block for asymmetric catalysis. Chem Soc Rev 2020; 49:6755-6788. [PMID: 32785345 DOI: 10.1039/c9cs00346k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Deconjugated butenolides have emerged as a popular synthon for the enantioselective synthesis of γ-lactones. This review provides a comprehensive overview on the catalytic asymmetric reactions of deconjugated butenolides reported till date.
Collapse
Affiliation(s)
| | - Santanu Mukherjee
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| |
Collapse
|
19
|
Shao Y, He X, Han D, Yang X, Yao H, Cheng D. Asymmetric Aza‐Henry Reaction of Indolenines Mediated by a Cinchona‐Alkaloid‐Thiourea Organocatalyst. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- You‐Dong Shao
- School of Chemistry and Chemical EngineeringHeze University Heze 274015 P. R. China
| | - Xiu‐Yan He
- School of Chemistry and Chemical EngineeringHeze University Heze 274015 P. R. China
| | - Dan‐Dan Han
- School of Chemistry and Chemical EngineeringHeze University Heze 274015 P. R. China
- Environment Research InstituteShandong University Qingdao 266237 P. R. China
| | - Xin‐Ru Yang
- School of Chemistry and Chemical EngineeringHeze University Heze 274015 P. R. China
| | - Hai‐Bin Yao
- School of Chemistry and Chemical EngineeringHeze University Heze 274015 P. R. China
| | - Dao‐Juan Cheng
- School of Chemistry and Chemical EngineeringHeze University Heze 274015 P. R. China
| |
Collapse
|