1
|
Chen L, Wang G, Nong X, Shao W, Li J, Guo Y, Fan B. Asymmetric 1,4-Addition of Diarylphosphine Oxides to α, β-Unsaturated 2-Acyl Imidazoles. Chemistry 2024; 30:e202401017. [PMID: 38652470 DOI: 10.1002/chem.202401017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Here we introduce a metal-free, catalytic and enantioselective strategy from α,β-unsaturated 2-acyl imidazoles to the chiral phosphorous 2-acyl imidazoles. Interestingly, this methodology was catalyzed by the classical and commercial oxazaborolidine under mild conditions. This strategy features a wide range of substrates scope with good yields and excellent enantioselectivities. The possible mechanism further suggests the key of this reaction through the cleavage of diarylphosphine oxides using Frustrated Lewis Pairs theory.
Collapse
Affiliation(s)
- Lirong Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Guiyong Wang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Xiufei Nong
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Wendi Shao
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Jiuling Li
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Yafei Guo
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Baomin Fan
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| |
Collapse
|
2
|
Wu F, Li Z, Fu C, Wang G, Zheng C, Wu X. Synergistic Ni/Pd Catalysis for Asymmetric Allylic Alkylation of 2-Acyl Imidazoles. Org Lett 2023. [PMID: 37450617 DOI: 10.1021/acs.orglett.3c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The asymmetric α-allylation of α-aryl-substituted 2-acetyl imidazoles synergistically catalyzed by Ni/Pd catalysts has been developed. In this process, the nickel-bisoxazoline complex activates the enolate of an acetyl imidazole, which then reacts with a π-allyl palladium electrophile generated from an allyl alcohol derivative by a palladium-based catalyst. A broad scope of substrates was suitable for this reaction. The utility of this method was demonstrated by a gram-scale reaction and subsequent elaboration of the allylation products.
Collapse
Affiliation(s)
- Fan Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai Univerversity, Shanghai 200444, China
| | - Zhiming Li
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai Univerversity, Shanghai 200444, China
| | - Chao Fu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai Univerversity, Shanghai 200444, China
| | - Guan Wang
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai Univerversity, Shanghai 200444, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai Univerversity, Shanghai 200444, China
| |
Collapse
|
3
|
Duchemin N, Aubert S, de Souza JV, Bethge L, Vonhoff S, Bronowska AK, Smietana M, Arseniyadis S. New Benchmark in DNA-Based Asymmetric Catalysis: Prevalence of Modified DNA/RNA Hybrid Systems. JACS AU 2022; 2:1910-1917. [PMID: 36032523 PMCID: PMC9400053 DOI: 10.1021/jacsau.2c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
By harnessing the chirality of the DNA double helix, chemists have been able to obtain new, reliable, selective, and environmentally friendly biohybrid catalytic systems with tailor-made functions. Nonetheless, despite all the advances made throughout the years in the field of DNA-based asymmetric catalysis, many challenges still remain to be faced, in particular when it comes to designing a "universal" catalyst with broad reactivity and unprecedented selectivity. Rational design and rounds of selection have allowed us to approach this goal. We report here the development of a DNA/RNA hybrid catalytic system featuring a covalently attached bipyridine ligand, which exhibits unmatched levels of selectivity throughout the current DNA toolbox and opens new avenues in asymmetric catalysis.
Collapse
Affiliation(s)
- Nicolas Duchemin
- Queen
Mary University of London, Department of Chemistry, Mile End Road, London E1 4NS, United
Kingdom
- NOXXON
Pharma AG, Max-Dohrn-Strasse 8-10, Berlin 10589, Germany
| | - Sidonie Aubert
- Queen
Mary University of London, Department of Chemistry, Mile End Road, London E1 4NS, United
Kingdom
| | - João V. de Souza
- Chemistry−School
of Natural and Environmental Sciences, Newcastle
University, Newcastle NE1 7RU, United Kingdom
| | - Lucas Bethge
- NOXXON
Pharma AG, Max-Dohrn-Strasse 8-10, Berlin 10589, Germany
| | - Stefan Vonhoff
- NOXXON
Pharma AG, Max-Dohrn-Strasse 8-10, Berlin 10589, Germany
| | - Agnieszka K. Bronowska
- Chemistry−School
of Natural and Environmental Sciences, Newcastle
University, Newcastle NE1 7RU, United Kingdom
| | - Michael Smietana
- Institut
des Biomolécules Max Mousseron, Université
de Montpellier, CNRS, ENSCM, 1919 Route de Mende, Montpellier 34095, France
| | - Stellios Arseniyadis
- Queen
Mary University of London, Department of Chemistry, Mile End Road, London E1 4NS, United
Kingdom
| |
Collapse
|
4
|
Yin Q, Li Z, Wu F, Ji M, Fu C, Wu X. Conjugate Addition of α‐Substituted Acyl Imidazoles to Nitroalkenes Catalyzed by Nickel Bisoxazoline and B(C6F5)3. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Guo J, Wang D, Pantatosaki E, Kuang H, Papadopoulos GK, Tsapatsis M, Kokkoli E. A Localized Enantioselective Catalytic Site on Short DNA Sequences and Their Amphiphiles. JACS AU 2022; 2:483-491. [PMID: 35252997 PMCID: PMC8889555 DOI: 10.1021/jacsau.1c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 06/14/2023]
Abstract
A DNA-based artificial metalloenzyme (ArM) consisting of a copper(II) complex of 4,4'-dimethyl-2,2'-bipyridine (dmbipy-Cu) bound to double-stranded DNA (dsDNA) as short as 8 base pairs with only 2 contiguous central pairs (G for guanine and C for cytosine) catalyzes the highly enantioselective Diels-Alder reaction, Michael addition, and Friedel-Crafts alkylation in water. Molecular simulations indicate that these minimal sequences provide a single site where dmbipy-Cu is groove-bound and able to function as an enantioselective catalyst. Enantioselective preference inverts when d-DNA is replaced with l-DNA. When the DNA is conjugated to a hydrophobic tail, the obtained ArMs exhibit enantioselective performance in a methanol-water mixture superior to that of non-amphiphilic dsDNA, and dsDNA-amphiphiles with more complex G•C-rich sequences.
Collapse
Affiliation(s)
- Jun Guo
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Danyu Wang
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Evangelia Pantatosaki
- School
of Chemical Engineering, National Technical
University of Athens, 15780 Athens, Greece
| | - Huihui Kuang
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - George K. Papadopoulos
- School
of Chemical Engineering, National Technical
University of Athens, 15780 Athens, Greece
- Institute
for Medical Engineering and Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Tsapatsis
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Applied
Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, United States
| | - Efrosini Kokkoli
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Yum JH, Sugiyama H, Park S. Modular quadruplex-duplex hybrids as biomolecular scaffolds for asymmetric Michael addition reactions. Org Biomol Chem 2020; 18:6812-6817. [PMID: 32870219 DOI: 10.1039/d0ob01362e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Asymmetric synthesis based on DNA scaffolds has been actively exploited because of the advantages of DNA such as diverse tertiary structures, chemical stability, and easy handling. Since duplex DNA-based hybrid catalysts have demonstrated this remarkable capability, efforts have been made to investigate new biomolecular scaffolds. Herein, we report modular quadruplex-duplex (QD) hybrid DNA catalysts containing bipyridine ligands and hydrogen donor moieties. The conformation, thermal stability, and metal-binding ability of modified QD hybrid DNA were characterized using spectroscopy. The QD hybrid-based DNA catalysts were successfully applied to asymmetric Michael addition reactions (86% conversion and 76% ee). This study describes a new type of DNA hybrid catalyst produced by the construction of a cooperative active site with a Lewis acid and a H-bond donor.
Collapse
Affiliation(s)
- Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
7
|
Xin HL, Pang B, Choi J, Akkad W, Morimoto H, Ohshima T. C-C Bond Cleavage of Unactivated 2-Acylimidazoles. J Org Chem 2020; 85:11592-11606. [PMID: 32819091 DOI: 10.1021/acs.joc.0c01458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
2-Acylimidazoles are widely used as post-transformable carboxylic acid equivalents in chemoselective and enantioselective reactions. Their transformations, however, require pretreatment with highly reactive, toxic methylating reagents to facilitate C-C bond cleavage. Here, we demonstrate that such pretreatment can be avoided and the C-C bond cleaved under neutral conditions without the use of additional reagents or catalysts. The scope of the reaction, including the use of products reported in the literature as substrates, and some mechanistic insights are described.
Collapse
Affiliation(s)
- Hai-Long Xin
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Bo Pang
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeesoo Choi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Walaa Akkad
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Kang T, Hou L, Ruan S, Cao W, Liu X, Feng X. Lewis acid-catalyzed asymmetric reactions of β,γ-unsaturated 2-acyl imidazoles. Nat Commun 2020; 11:3869. [PMID: 32747706 PMCID: PMC7398931 DOI: 10.1038/s41467-020-17681-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
The investigation of diverse reactivity of β,γ-unsaturated carbonyl compounds is of great value in asymmetric catalytic synthesis. Numerous enantioselective transformations have been well developed with β,γ-unsaturated carbonyl compounds as nucleophiles, however, few example were realized by utilizing them as not only nucleophiles but also electrophiles under a same catalytic system. Here we report a regioselective catalytic asymmetric tandem isomerization/α-Michael addition of β,γ-unsaturated 2-acyl imidazoles in the presence of chiral N,N′-dioxide metal complexes, delivering a broad range of optically pure 1,5-dicarbonyl compounds with two vicinal tertiary carbon stereocenters in up to >99% ee under mild conditions. Meanwhile, stereodivergent synthesis is disclosed to yield all four stereoisomers of products. Control experiments suggest an isomerization process involved in the reaction and give an insight into the role of NEt3. In addition, Mannich reaction and sulfur-Michael addition of β,γ-unsaturated 2-acyl imidazoles proceed smoothly as well under the same catalytic system. The investigation of reactivity of β,γ-unsaturated carbonyl compounds is of great synthetic value, especially in asymmetric transformations. Here, the authors report a catalytic asymmetric tandem isomerization/α-Michael addition of β,γ-unsaturated 2-acyl imidazoles in presence of chiral N,N′-dioxide metal catalysts.
Collapse
Affiliation(s)
- Tengfei Kang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Sai Ruan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
9
|
Duchemin N, Cattoen M, Gayraud O, Anselmi S, Siddiq B, Buccafusca R, Daumas M, Ferey V, Smietana M, Arseniyadis S. Direct Access to Highly Enantioenriched α-Branched Acrylonitriles through a One-Pot Sequential Asymmetric Michael Addition/Retro-Dieckmann/Retro-Michael Fragmentation Cascade. Org Lett 2020; 22:5995-6000. [PMID: 32790425 DOI: 10.1021/acs.orglett.0c02079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A highly enantioselective synthesis of α-branched acrylonitriles is reported featuring a one-pot sequential asymmetric Michael addition/retro-Dieckmann/retro-Michael fragmentation cascade. The method, which relies on a solid, bench-stable, and commercially available acrylonitrile surrogate, is practical, scalable, and highly versatile and provides a direct access to a wide range of enantioenriched nitrile-containing building blocks. Most importantly, the method offers a new tool to incorporate an acrylonitrile moiety in an asymmetric fashion.
Collapse
Affiliation(s)
- Nicolas Duchemin
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Martin Cattoen
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Oscar Gayraud
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Silvia Anselmi
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Bilal Siddiq
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Roberto Buccafusca
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Marc Daumas
- Sanofi Chimie, Route d'Avignon, 30390 Aramon, France
| | - Vincent Ferey
- Sanofi R&D, 371 rue du Professeur Blayac, 34080 Montpellier, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Stellios Arseniyadis
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
10
|
Dey S, Jäschke A. Covalently Functionalized DNA Duplexes and Quadruplexes as Hybrid Catalysts in an Enantioselective Friedel-Crafts Reaction. Molecules 2020; 25:E3121. [PMID: 32650544 PMCID: PMC7397069 DOI: 10.3390/molecules25143121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 12/01/2022] Open
Abstract
The precise site-specific positioning of metal-ligand complexes on various DNA structures through covalent linkages has gained importance in the development of hybrid catalysts for aqueous-phase homogeneous catalysis. Covalently modified double-stranded and G-quadruplex DNA-based hybrid catalysts have been investigated separately. To understand the role of different DNA secondary structures in enantioselective Friedel-Crafts alkylation, a well-known G-quadruplex-forming sequence was covalently modified at different positions. The catalytic performance of this modified DNA strand was studied in the presence and absence of a complementary DNA sequence, resulting in the formation of two different secondary structures, namely duplex and G-quadruplex. Indeed, the secondary structures had a tremendous effect on both the yield and stereoselectivity of the catalyzed reaction. In addition, the position of the modification, the topology of the DNA, the nature of the ligand, and the length of the linker between ligand and DNA were found to modulate the catalytic performance of the hybrid catalysts. Using the optimal linker length, the quadruplexes formed the (-)-enantiomer with up to 65% ee, while the duplex yielded the (+)-enantiomer with up to 62% ee. This study unveils a new and simple way to control the stereochemical outcome of a Friedel-Crafts reaction.
Collapse
Affiliation(s)
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
11
|
Mansot J, Lauberteaux J, Lebrun A, Mauduit M, Vasseur J, Marcia de Figueiredo R, Arseniyadis S, Campagne J, Smietana M. DNA‐Based Asymmetric Inverse Electron‐Demand Hetero‐Diels–Alder. Chemistry 2020; 26:3519-3523. [DOI: 10.1002/chem.202000516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Justine Mansot
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Jimmy Lauberteaux
- Institut Charles GerhardtCNRSUniversité de MontpellierENSCM, Avenue Emile Jeanbrau 34296 Montpellier France
| | - Aurélien Lebrun
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | - Marc Mauduit
- Ecole Nationale Supérieure de Chimie de RennesCNRS, ISCR UMR 6226Univ Rennes 35000 Rennes France
| | - Jean‐Jacques Vasseur
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| | | | - Stellios Arseniyadis
- School of Biological and Chemical SciencesQueen Mary University of London Mile End Road London E1 4NS UK
| | - Jean‐Marc Campagne
- Institut Charles GerhardtCNRSUniversité de MontpellierENSCM, Avenue Emile Jeanbrau 34296 Montpellier France
| | - Michael Smietana
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRS, ENSCM Place Eugène Bataillon 34095 Montpellier France
| |
Collapse
|
12
|
Lauberteaux J, Lebrun A, van der Lee A, Mauduit M, Marcia de Figueiredo R, Campagne JM. Iron-Catalyzed Enantioselective Intramolecular Inverse Electron-Demand Hetero Diels–Alder Reactions: An Access to Bicyclic Dihydropyran Derivatives. Org Lett 2019; 21:10007-10012. [DOI: 10.1021/acs.orglett.9b03752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimmy Lauberteaux
- Institut Charles Gerhardt Montpellier, UMR 5253, Université Montpellier, CNRS, ENSCM, Ecole Nationale Supérieure de Chimie, 240 Avenue Emile Jeanbrau, 34296 Montpellier Cedex 5, France
| | - Aurélien Lebrun
- NMR Analysis: LMP, IBMM, Université Montpellier, Montpellier, France
| | - Arie van der Lee
- X-ray Structures Analysis: Institut Européen des Membranes (IEM), UMR 5632, Université Montpellier, CNRS - Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Marc Mauduit
- Université Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Renata Marcia de Figueiredo
- Institut Charles Gerhardt Montpellier, UMR 5253, Université Montpellier, CNRS, ENSCM, Ecole Nationale Supérieure de Chimie, 240 Avenue Emile Jeanbrau, 34296 Montpellier Cedex 5, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt Montpellier, UMR 5253, Université Montpellier, CNRS, ENSCM, Ecole Nationale Supérieure de Chimie, 240 Avenue Emile Jeanbrau, 34296 Montpellier Cedex 5, France
| |
Collapse
|
13
|
Shu C, Liu H, Slawin AMZ, Carpenter-Warren C, Smith AD. Isothiourea-catalysed enantioselective Michael addition of N-heterocyclic pronucleophiles to α,β-unsaturated aryl esters. Chem Sci 2019; 11:241-247. [PMID: 34040717 PMCID: PMC8133005 DOI: 10.1039/c9sc04303a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The isothiourea-catalysed enantioselective Michael addition of 3-aryloxindole and 4-substituted-dihydropyrazol-3-one pronucleophiles to α,β-unsaturated p-nitrophenyl esters is reported. This process generates products containing two contiguous stereocentres, one quaternary, in good yields and excellent enantioselectivities (>30 examples, up to > 95 : 5 dr and 99 : 1 er). This protocol harnesses the multifunctional ability of p-nitrophenoxide to promote effective catalysis. In contrast to previous methodologies using tertiary amine Lewis bases, in which the pronucleophile was used as the solvent, this work allows bespoke pronucleophiles to be used in stoichiometric quantities. The isothiourea-catalysed enantioselective Michael addition of 3-aryloxindole and 4-substituted-dihydropyrazol-3-one pronucleophiles to α,β-unsaturated p-nitrophenyl esters is reported.![]()
Collapse
Affiliation(s)
- Chang Shu
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Honglei Liu
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Cameron Carpenter-Warren
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| |
Collapse
|