1
|
Li X, Zhang Q, Xu M, Li X. Modulation of metal nanocatalysts for enhanced selectivity of chemoselective reduction and addition hydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
2
|
Gao W, Tang X, Yi H, Jiang S, Yu Q, Xie X, Zhuang R. Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review. J Environ Sci (China) 2023; 125:112-134. [PMID: 36375898 DOI: 10.1016/j.jes.2021.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/16/2023]
Abstract
As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds (VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been viewed as an efficient, economically feasible and environmentally friendly way for the elimination of VOCs. Supported metal catalyst is the preferred type of catalysts applied for VOCs catalytic combustion because of the synergy between active components and support as well as its flexibility in the composition. The presence of support not only plays the role of keeping the catalyst with good stability and mechanical strength, but also provides a large specific surface for the good dispersion of active components, which could effectively improve the performance of catalyst as well as decrease the usage of active components, especially the noble metal amount. Mesoporous molecular sieves, owing to their large surface area, unique porous structures, large pore size as well as uniform pore-size distribution, were viewed as superior support for dispersing active components. This review focuses on the recent development of mesoporous molecular sieve supported metal catalysts and their application in catalytic oxidation of VOCs. The effect of active component types, support structure, preparation method, precursors, etc. on the valence state, dispersion as well as the loading of active species were also discussed and summarized. Moreover, the corresponding conversion route of VOCs was also addressed. This review aims to provide some enlightment for designing the supported metal catalysts with superior activity and stability for VOCs removal.
Collapse
Affiliation(s)
- Wei Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Qingjun Yu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Xizhou Xie
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruijie Zhuang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Arango-Daza JC, Lluna-Galán C, Izquierdo-Aranda L, Cabrero-Antonino JR, Adam R. Heterogeneous Pd-Catalyzed Efficient Synthesis of Imidazolones via Dehydrogenative Condensation between Ureas and 1,2-Diols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Juan Camilo Arango-Daza
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
| | - Carles Lluna-Galán
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
| | - Luis Izquierdo-Aranda
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
| | - Jose R. Cabrero-Antonino
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
| | - Rosa Adam
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 València, Spain
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain
| |
Collapse
|
4
|
Lin S, Liu J, Ma L. Ni@C Catalyzed Hydrogenation of Acetophenone to Phenylethanol under Industrial Mild Conditions in Flow Reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00513h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic hydrogenation of organic substrates containing plenty of unsaturated functional groups is an important step in the industrial preparation of fine chemicals and has always been a hot spot...
Collapse
|
5
|
Recent developments of supported and magnetic nanocatalysts for organic transformations: an up-to-date review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Zaidi S, Asikin-Mijan N, Hussain A, Mastuli MS, Alharthi FA, Alghamdi AA, Taufiq-Yap Y. Facile synthesis of nanosized La/ZrO2 catalysts for ketonization of free fatty acid and biomass feedstocks. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Zhao Y, Wang L, Kochubei A, Yang W, Xu H, Luo Y, Baiker A, Huang J, Wang Z, Jiang Y. Formation and Location of Pt Single Sites Induced by Pentacoordinated Al Species on Amorphous Silica-Alumina. J Phys Chem Lett 2021; 12:2536-2546. [PMID: 33683898 DOI: 10.1021/acs.jpclett.1c00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alumina and its mixed oxides are popular industrial supports for emerging supported metal catalysts. Pentacoordinated Al (AlV) species are identified as key surface sites for anchoring and stabilizing metal single-site catalysts; however, AlV is rare in conventional amorphous silica-alumina (ASA). Recently, we have developed AlV-enriched ASA, which was applied as a support for the synthesis of Pt single-site catalysts in this work. Each preparation stage and the interaction between Pt and surface Al species were explored by 1H and 27Al solid-state nuclear magnetic resonance spectroscopy, and the formation of the dominant Pt single sites on the surface of AlV-enriched ASA was confirmed by high-angle annular dark-field imaging scanning transmission electron microscopy and energy dispersive spectroscopy line scanning. On the surface of supports without a significant AlV population (Pt/Al2O3 and Pt/SiO2), mainly Pt nanoparticles were formed. This indicates that AlV contributes to the strong metal-support interaction to stabilize the Pt single sites on Pt/ASA, which was characterized by diffuse reflectance infrared Fourier transform spectroscopy combined with CO adsorption, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. Pt single sites supported on AlV-enriched ASA exhibit excellent chemoselectivity in the hydrogenation of C═O groups, affording 2-3-fold higher yields compared to those of Pt nanoparticles supported on Al2O3 and SiO2.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lizhuo Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alena Kochubei
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Wenjie Yang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Haimei Xu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Hönggerberg, HCI, Zurich CH-8093, Switzerland
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zichun Wang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
8
|
Murata K, Ogura K, Ohyama J, Sawabe K, Yamamoto Y, Arai S, Satsuma A. Selective Hydrogenation of Cinnamaldehyde over the Stepped and Plane Surface of Pd Nanoparticles with Controlled Morphologies by CO Chemisorption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26002-26012. [PMID: 32429665 DOI: 10.1021/acsami.0c05938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Carbon monoxide (CO) molecules are attracting attention as capping agents that control the structure of metal nanoparticles. In this study, we aimed to control the shape and surface structure of Pd particles by reducing the supported Pd precursor with CO. The reduction of Pd nanoparticles with CO promoted the exposure of step sites and generated spherical and concave-tetrahedral Pd particles on carbon and SiO2 supports. On the other hand, conventional H2-reduced Pd particles show a flattened shape. The preferential exposure of the step sites by the adsorbed CO molecules was supported by the density functional theory-calculated surface energy and the Wulff construction. Morphology- and surface-controlled Pd nanoparticles were used to study the surface structure and morphology effects of Pd nanoparticles on cinnamaldehyde (CAL) hydrogenation. With an increase in the fraction of step sites on Pd nanoparticles, the hydrogenation activity and selectivity of hydrocinnamaldehyde (HCAL) increased. On step sites, the adsorption of the C═C bond of CAL proceeded preferentially, and HCAL was efficiently and selectively generated.
Collapse
Affiliation(s)
- Kazumasa Murata
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Keiji Ogura
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Kyoichi Sawabe
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuta Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Shigeo Arai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Atsushi Satsuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
9
|
Liu J, Zhang H, Lu N, Yan X, Fan B, Li R. Influence of Acidity of Mesoporous ZSM-5-Supported Pt on Naphthalene Hydrogenation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04411] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|