1
|
Krupa B, Szyling J, Walkowiak J. Pt(PPh 3) 4 and Pt(PPh 3) 4@IL catalyzed hydroboration of ketones. Sci Rep 2023; 13:20237. [PMID: 37981660 PMCID: PMC10658173 DOI: 10.1038/s41598-023-47518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
An efficient method for the reduction of various ketones via [Pt(PPh3)4]-catalyzed hydroboration with HBpin has been successfully developed for the first time. The protocol is suitable for symmetrical and unsymmetrical derivatives possessing electron donating or withdrawing functional groups. O-borylated products were easily converted to 2° alcohols via hydrolysis with high isolated yields. According to the low-temperature NMR spectroscopy, a reaction mechanism was proposed. Additionally, effective immobilization of the catalyst in the ionic liquid [BMIM][NTf2] was applied to increase the productivity of the process by carrying out reactions under the repetitive batch mode, obtaining higher TON values and limiting the amount of expensive Pt used. The catalyst stability and almost neglectable leaching were confirmed by ICP-MS analysis of the extracted mixture. A simple separation method via extraction with n-heptane, efficient catalyst immobilization, and the commercial availability of the Pt complex, make this protocol an attractive method for the hydroboration of ketones.
Collapse
Affiliation(s)
- Barbara Krupa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
2
|
Stefanowska K, Nagórny J, Szyling J, Franczyk A. Functionalization of octaspherosilicate (HSiMe 2O) 8Si 8O 12 with buta-1,3-diynes by hydrosilylation. Sci Rep 2023; 13:14314. [PMID: 37653063 PMCID: PMC10471723 DOI: 10.1038/s41598-023-41461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrosilylation with octaspherosilicate (HSiMe2O)8Si8O12 (1) has provided hundreds of molecular and macromolecular systems so far, making this method the most popular in the synthesis of siloxane-based, nanometric, cubic, and reactive building blocks. However, there are no reports on its selective reaction with 1,3-diynes, which allows for the formation of new products with unique properties. Therefore, herein we present an efficient protocol for monohydrosilylation of symmetrically and non-symmetrically 1,4-disubstituted buta-1,3-diynes with 1. The compounds obtained bear double and triple bonds and other functionalities (e.g., Br, F, OH, SiR3), making them highly desirable, giant building blocks in organic synthesis and material chemistry. These compounds were fully characterized by 1H, 13C, 29Si, 1D NOE, 1H-13C HSQC NMR, FT-IR, and MALDI TOF MS, EA, UV-Vis, and TGA analysis. The TGA proved their high thermal stability up to 427 ℃ (Td10%) for compound 3j.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jakub Nagórny
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
3
|
Szyling J, Walkowiak J, Czapik A, Franczyk A. Synthesis of unsymmetrically and symmetrically functionalized disiloxanes via subsequent hydrosilylation of C≡C bonds. Sci Rep 2023; 13:10244. [PMID: 37353562 DOI: 10.1038/s41598-023-37375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
A selective synthesis of unsymmetrically functionalized disiloxanes via the subsequent hydrosilylation of internal alkynes in the first step, and alkynes (terminal or internal) or 1,3-diynes in the second, with 1,1,3,3-tetramethyldisiloxane (1) is presented for the first time. Using developed approaches performed in a stepwise or one-pot manner a new family of disubstituted disiloxanes was obtained which had previously been inaccessible by other synthetic methods. Moreover, symmetrically functionalized disiloxanes were obtained by direct hydrosilylation of 2 equivalents of terminal or internal alkynes with 1, showing the unique versatility of the hydrosilylation process. Three examples of symmetric disiloxanes were characterized by single crystal X-ray diffraction for the first time. As a result, a wide group of new compounds which can find potential applications as building blocks or coupling agents was obtained and characterized.
Collapse
Affiliation(s)
- Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Agnieszka Czapik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Karasiewicz J, Dutkiewicz M, Olejnik A, Leśniewska J, Janicka Z, Maciejewski H. POSS derivatives containing extremely different surface properties as emulsifiers in colloidal systems. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Duszczak J, Mrzygłód A, Mituła K, Dutkiewicz M, Januszewski R, Rzonsowska M, Dudziec B, Nowicki M, Kubicki M. Distinct insight into the use of difunctional double-decker silsesquioxanes as building blocks for alternating A–B type macromolecular frameworks. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02161g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A distinct look at known, hydrosilylation reactions used for the formation of DDSQ-based linear A–B alternating macromolecular systems with DPn > 1000 is presented. Selected physicochemical properties of obtained hybrid co-polymers were determined.
Collapse
Affiliation(s)
- Julia Duszczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Aleksandra Mrzygłód
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Katarzyna Mituła
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Michał Dutkiewicz
- Adam Mickiewicz University Foundation, Poznan Science and Technology Park, Rubiez 46, 61-612 Poznan, Poland
| | - Rafał Januszewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Monika Rzonsowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Beata Dudziec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Marek Nowicki
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
6
|
Szyling J, Szymańska A, Franczyk A, Walkowiak J. [Pt(PPh 3) 4]-Catalyzed Selective Diboration of Symmetrical and Unsymmetrical 1,3-Diynes. J Org Chem 2022; 87:10651-10663. [PMID: 35917577 PMCID: PMC9396666 DOI: 10.1021/acs.joc.2c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A straightforward, efficient, and selective method for the preparation of novel boryl-functionalized enynes or dienes via [Pt(PPh3)4]-catalyzed diboration of a broad spectrum of symmetrical and unsymmetrical 1,3-diynes was developed. The catalytic cycle of diboration was proposed on the basis of low-temperature 31P NMR studies. An alternative isolation method via product condensation on a cold finger was developed, which, in contrast to previous literature reports, eliminates the need for the additional transformation of rapidly decomposing enynyl pinacol boronates to more stable silica-based column chromatography derivatives during the separation step. To prove the efficiency of this simple catalytic protocol, bisboryl-functionalized enynes were synthesized in a gram scale and tested as useful building blocks in advanced organic transformations, such as hydrosilylation and Suzuki and sila-Sonogashira couplings. The presence of silyl, boryl, as well as other functions like halogen or alkoxy in their structures builds a new class of multifunctionalized enynes that might be modified in various chemical reactions.
Collapse
Affiliation(s)
- Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Aleksandra Szymańska
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
7
|
Abstract
Metal-catalyzed hydrofunctionalization reactions of alkynes, i.e., the addition of Y–H units (Y = heteroatom or carbon) across the carbon–carbon triple bond, have attracted enormous attention for decades since they allow the straightforward and atom-economic access to a wide variety of functionalized olefins and, in its intramolecular version, to relevant heterocyclic and carbocyclic compounds. Despite conjugated 1,3-diynes being considered key building blocks in synthetic organic chemistry, this particular class of alkynes has been much less employed in hydrofunctionalization reactions when compared to terminal or internal monoynes. The presence of two C≡C bonds in conjugated 1,3-diynes adds to the classical regio- and stereocontrol issues associated with the alkyne hydrofunctionalization processes’ other problems, such as the possibility to undergo 1,2-, 3,4-, or 1,4-monoadditions as well as double addition reactions, thus increasing the number of potential products that can be formed. In this review article, metal-catalyzed hydrofunctionalization reactions of these challenging substrates are comprehensively discussed.
Collapse
|
8
|
Abstract
This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.
Collapse
Affiliation(s)
- Jędrzej Walkowiak
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Jakub Szyling
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan. .,Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
9
|
Stefanowska K, Sokolnicki T, Walkowiak J, Czapik A, Franczyk A. Directed cis-hydrosilylation of borylalkynes to borylsilylalkenes. Chem Commun (Camb) 2022; 58:12046-12049. [DOI: 10.1039/d2cc04318a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directed by the choice of catalyst cis-hydrosilylation of borylalkynes leads to novel borylsilylalkenes which are crucial synthons for the introduction of the carbon–carbon double bonds in organic synthesis.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Tomasz Sokolnicki
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Agnieszka Czapik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| |
Collapse
|
10
|
Stefanowska K, Szyling J, Walkowiak J, Franczyk A. Alkenyl-Functionalized Open-Cage Silsesquioxanes (RSiMe 2O) 3R' 7Si 7O 9: A Novel Class of Building Nanoblocks. Inorg Chem 2021; 60:11006-11013. [PMID: 34133151 PMCID: PMC8335724 DOI: 10.1021/acs.inorgchem.1c00689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Trifunctional incompletely
condensed polyhedral oligomeric silsesquioxanes
(RSiMe2O)3R′7Si7O9 (IC-POSSs) are considered as intriguing
building nanoblocks dedicated to constructing highly advanced organic–inorganic
molecules and polymers. Up to now, they have been mainly obtained via hydrosilylation of olefins, while the hydrosilylation
of the C≡C bonds has not been studied at all, despite the enormous
potential of this approach resulting from the possibility of introducing
3, 6, or even more functional groups into the IC-POSS structure. Therefore, in this work, we present a highly selective
and efficient synthesis of the first example of tripodal alkenyl-functionalized IC-POSSs, obtained via platinum-catalyzed
hydrosilylation of the terminal and internal alkynes, as well as symmetrically
and nonsymmetrically 1,4-disubstituted buta-1,3-diynes with silsesquioxanes
(HSiMe2O)3R′7Si7O9 (R′ = i-C4H9 (1a), (H3C)3CH2C(H3C)HCH2C (1b)). The resulting
products are synthetic intermediates that contain C=C bonds
and functional groups (e.g., OSiMe3, SiR3, Br,
F, B(O(C(CH3)2)2 (Bpin)), thienyl),
which make them suitable for application in the synthesis of novel,
complex, hybrid materials with unique properties. The first example of the synthesis of
alkenyl-functionalized
open-cage silsesquioxanes (IC-POSS) via platinum-catalyzed
hydrosilylation of C−C triple bonds in alkynes and buta-1,3-diynes
is presented. The optimized synthetic procedure allowed for the selective
and efficient synthesis of 20 new functional molecules capable of
further modification by hydrosilylation, hydroboration, or other chemical
processes.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
11
|
Thakur K, Khare NK. Copper (I) Catalyzed Homo‐ and Heterocoupling of Mono and Disaccharide Deoxy Sugar Based Terminal Alkynes to Synthesize Mimic Glycoconjugates. ChemistrySelect 2021. [DOI: 10.1002/slct.202004266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kratima Thakur
- Department of Chemistry University of Lucknow Lucknow 226007 India
| | - Naveen K. Khare
- Department of Chemistry University of Lucknow Lucknow 226007 India
| |
Collapse
|
12
|
Yang Y, Jiang YN, Lin ZY, Zeng JH, Liu ZK, Zhan ZP. Highly regio- and stereo-selective heterogeneous 1,3-diyne hydrosilylation controlled by a nickel-metalated porous organic polymer. Org Chem Front 2021. [DOI: 10.1039/d1qo00547b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A porous organic polymer (POL-xantphos) was synthesized and employed as a heterogeneous ligand for nickel catalyzed highly regio- and stereo-selective 1,3-diyne hydrosilylation.
Collapse
Affiliation(s)
- Ying Yang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Ya-Nan Jiang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Zhi-Yi Lin
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Jia-Hao Zeng
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Zhi-Kai Liu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| | - Zhuang-Ping Zhan
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, P. R. China
| |
Collapse
|
13
|
Shen S, Zong Z, Sun N, Hu B, Shen Z, Hu X, Jin L. Regio- and stereoselective cobalt-catalyzed hydrosilylation of 1,3-diynes with primary and secondary silanes. Org Chem Front 2021. [DOI: 10.1039/d1qo00939g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reported herein is a well-defined geometry-constrained tridentate NNN-cobalt complex for regio- and stereoselective hydrosilylation of 1,3-diynes.
Collapse
Affiliation(s)
- Shaocong Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Zhijian Zong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Nan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Baoxiang Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, the Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
14
|
Formation of Bifunctional Octasilsesquioxanes via Silylative Coupling and Cross-Metathesis Reaction. MATERIALS 2020; 13:ma13183966. [PMID: 32911628 PMCID: PMC7557879 DOI: 10.3390/ma13183966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 11/16/2022]
Abstract
Bifunctional silsesquioxanes create an attractive group of compounds with a wide range of potential applications, and recently they have gained much interest. They are known to be obtained mainly via hydrosilylation, but we disclose novel synthetic protocols based on different but complementary reactions, i.e., cross-metathesis (CM) and silylative coupling (SC). A series of cubic T8 type silsesquioxane derivatives with a broad scope of styryl substituents were synthesized in a one-pot procedure and characterized by spectroscopic and spectrometric methods. All of the new compounds can be obtained in a one-pot manner, which has an attractive impact on the synthetic procedure, as it is economic in terms of the isolation of intermediate products. Additionally, the methodology disclosed here enables the (E)-stereoselective introduction of styrenes derivative to the cubic T8 type core. The presented compounds can be interesting precursors for a further functionalization that may significantly increase the possibility of their application in the design and synthesis of new functional materials.
Collapse
|