1
|
Song B, Zhu X, Wang W, Wang L, Pei X, Qian X, Liu L, Xu Z. Toughening of melamine-formaldehyde foams and advanced applications based on functional design. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Wei X, Ge G, Yu W, Guo H, Guo X, Song C, Zhao Z. Plastering Sponge with Nanocarbon-Containing Slurry to Construct Mechanically Robust Macroporous Monolithic Catalysts for Direct Dehydrogenation of Ethylbenzene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19315-19323. [PMID: 35437981 DOI: 10.1021/acsami.1c24731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocarbons have shown great potential as a sustainable alternative to metal catalysts, but their powder form limits their industrial applications. The preparation of nanocarbon-based monolithic catalysts is a practical approach for overcoming the resulting pressure drop associated with their powder form. In our previous work, a ploycation-mediated approach was used to successfully prepare nanocarbon-containing monoliths. Unfortunately, because there are no macropores in the monolith, it needs to be crashed into millimeter-sized particles before application. Therefore, developing a facile method for preparing mechanically robust nanocarbon-based macroporous monolithic catalysts is vital but still challenging. Herein, evoked by swallows building their nests, we report an approach for successfully preparing a mechanically robust nanodiamond-based macroporous monolith catalyst by plastering melamine sponge (MS) with a slurry composed of nanodiamonds (NDs) and poly(imidazolium-methylene) chloride (PImM) followed by an annealing process. The macroporous monolith catalyst (ND/NCMS-NCPImM) containing NDs well dispersed in N-doped carbon is mechanically robust with enriched macroscopic pores. It exhibits outstanding catalysis toward ethylbenzene to styrene through a direct dehydrogenation reaction with a high styrene rate in a steady state (5.50 mmol g-1 h-1) and high styrene selectivity (99.5%). ND/NCMS-NCPImM shows much higher activity than powder ND by 1.9 fold. In addition, this work solves the significant problem of large pressure drop encountered with conventional powdered nanocarbon catalysts in the flow reactor. This work not only creates an excellent nanodiamond-based macroporous monolithic ethylbenzene direct dehydrogenation catalyst but also presents a promising avenue for preparing other macroporous monolithic catalysts for diverse transformations.
Collapse
Affiliation(s)
- Xiaojing Wei
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Guifang Ge
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Hongchen Guo
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- EMS Energy Institute, Department of Energy & Mineral Engineering and of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Zhou Q, Ge G, Guo Z, Liu Y, Zhao Z. Poly(imidazolium-methylene)-Assisted Grinding Strategy to Prepare Nanocarbon-Embedded Network Monoliths for Carbocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qin Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guifang Ge
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhanglong Guo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Qiao S, Liu J, Kawi S. Editorial: Electrocatalysis ‐ From Batteries to Clean Energy Conversion. ChemCatChem 2019. [DOI: 10.1002/cctc.201902214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shizhang Qiao
- School of Chemical Engineering and Advanced MaterialsThe University of Adelaide Adelaide SA 5005 Australia
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023, Dalian P.R. China
- DICP-Surrey Joint Centre for Future MaterialsDepartment of Chemical and Process EngineeringUniversity of Surrey, Guildford Surrey GU2 7XH UK
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore 117582 Singapore
| |
Collapse
|