1
|
Borah A, Sumit, Kumari A, Markad VS, Ravindra AV, Rajeshkhanna G. Ni- and Co-Based MOF-Derived Ni xCo 3-xO 4 Materials: As an Efficient Anode for Direct Methanol Fuel Cell Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22705-22716. [PMID: 39418500 DOI: 10.1021/acs.langmuir.4c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Finding inexpensive and efficient anode materials is crucial for the oxidation of methanol in the direct methanol fuel cell (DMFC), which is the key electrode reaction. Herein, we report metal-organic framework (MOF)-derived Co3O4, NiO, and NixCo3-xO4 (where x = 1.5, 1, and 0.6) materials deposited on nickel foam as efficient anode material for methanol oxidation. Among them, NiCo2O4 exhibited the highest methanol oxidation activity, owing to its lowest charge-transfer resistance (0.097 Ω) and high electrochemically active surface area (1950 cm2), resulting in the lowest onset potential of 0.35 V vs Hg/HgO. The optimized Ni-to-Co ratio and synergistic effect between Ni and Co metals enable NiCo2O4 to achieve the highest mass activity of 151 mA mg-1 and geometric current density of 288 mA cm-2, demonstrating excellent durability over 14 h at 0.6 V. In addition, to optimize methanol concentration, all the electrocatalysts were tested in a range of methanol concentrations, showing 0.5 M methanol as the optimal concentration. This study focuses on optimizing the metal ratio and methanol concentration to achieve the highest catalytic activity. Additionally, this lays the foundation for developing diverse MOF-derived electrocatalysts and advancing DMFCs.
Collapse
Affiliation(s)
- Apurba Borah
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| | - Sumit
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| | - Anshu Kumari
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| | - Vishal Sanjay Markad
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| | - A V Ravindra
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamilnadu, India
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| |
Collapse
|
2
|
Jiang S, Wu M, Xiao T, Yin X, Gao Q, Xu C, Zhang M, Peng HQ, Liu B. Tailoring the Activity of Electrocatalytic Methanol Oxidation on Cobalt Hydroxide by the Incorporation of Catalytically Inactive Zinc Ions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55870-55876. [PMID: 38010202 DOI: 10.1021/acsami.3c13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Catalytically inactive Zn2+ is incorporated into cobalt hydroxide to synthesize hierarchical ZnCo-layered double hydroxide nanosheet networks supported on carbon fiber (ZnCo-LDH/CF). The incorporation of Zn2+ is revealed to endow ZnCo-LDH/CF with significantly superior performance in the aspects of the activity and selectivity for methanol electrooxidation to formic acid and the boosting effect for cathodic hydrogen production compared with the counterpart without Zn2+. Density functional theory (DFT) calculation reveals that the incorporation of nonactive Zn2+ can increase the density of states near the Fermi level of LDH (i.e., elevate electrical conductivity to form favorable charge transportation during electrocatalysis) and promote the adsorption and subsequent cleavage of methanol, thus leading to the enhanced methanol electrooxidation performance.
Collapse
Affiliation(s)
- Shuai Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mian Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tongyao Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xianjun Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qiang Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Cui Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mengyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hui-Qing Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Chen F, Guo S, Yu S, Zhang C, Guo M, Li C. Hierarchical N-doped carbon nanofiber-loaded NiCo alloy nanocrystals with enhanced methanol electrooxidation for alkaline direct methanol fuel cells. J Colloid Interface Sci 2023; 646:43-53. [PMID: 37182258 DOI: 10.1016/j.jcis.2023.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The high catalytic activity of non-precious metals in alkaline media opens a new direction for the development of alkaline direct methanol fuel cell (ADMFC) electrocatalysts. Herein, a highly dispersed N-doped carbon nanofibers (CNFs) -loaded NiCo non-precious metal alloy electrocatalyst based on metal-organic frameworks (MOFs) was prepared, which conferred excellent methanol oxidation activity and resistance to carbon monoxide (CO) poisoning through a surface electronic structure modulation strategy. The porous electrospun polyacrylonitrile (PAN) nanofibers and the P-electron conjugated structure of polyaniline chains provide fast charge transfer channels, enabling electrocatalysts with abundant active sites and efficient electron transfer. The optimized NiCo/N-CNFs@800 was tested as an anode catalyst for ADMFC single cell and exhibited a power density of 29.15 mW cm-2. Due to the fast charge transfer and mass transfer brought by its one-dimensional porous structure and the synergistic effect between NiCo alloy, NiCo/N-CNFs@800 is expected to be an economical, efficient and CO-resistant methanol oxidation reaction (MOR) electrocatalyst.
Collapse
Affiliation(s)
- Fei Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shiquan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| | - Chong Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Man Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Thamer BM, Abdul Hameed MM, El-Newehy MH. Molten Salts Approach of Poly(vinyl alcohol)-Derived Bimetallic Nickel-Iron Sheets Supported on Porous Carbon Nanosheet as an Effective and Durable Electrocatalyst for Methanol Oxidation. Gels 2023; 9:gels9030238. [PMID: 36975687 PMCID: PMC10048021 DOI: 10.3390/gels9030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
The preparation of metallic nanostructures supported on porous carbon materials that are facile, green, efficient, and low-cost is desirable to reduce the cost of electrocatalysts, as well as reduce environmental pollutants. In this study, a series of bimetallic nickel-iron sheets supported on porous carbon nanosheet (NiFe@PCNs) electrocatalysts were synthesized by molten salt synthesis without using any organic solvent or surfactant through controlled metal precursors. The as-prepared NiFe@PCNs were characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction, and photoelectron spectroscopy (XRD and XPS). The TEM results indicated the growth of NiFe sheets on porous carbon nanosheets. The XRD analysis confirmed that the Ni1-xFex alloy had a face-centered polycrystalline (fcc) structure with particle sizes ranging from 15.5 to 30.6 nm. The electrochemical tests showed that the catalytic activity and stability were highly dependent on the iron content. The electrocatalytic activity of catalysts for methanol oxidation demonstrated a nonlinear relationship with the iron ratio. The catalyst doped with 10% iron showed a higher activity compared to the pure nickel catalyst. The maximum current density of Ni0.9Fe0.1@PCNs (Ni/Fe ratio 9:1) was 190 mA/cm2 at 1.0 M of methanol. In addition to the high electroactivity, the Ni0.9Fe0.1@PCNs showed great improvement in stability over 1000 s at 0.5 V with a retained activity of 97%. This method can be used to prepare various bimetallic sheets supported on porous carbon nanosheet electrocatalysts.
Collapse
Affiliation(s)
- Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Dual morphology ZnCo2O4 coupled graphitic carbon nitride: An efficient electro-catalyst for electrochemical H2O2 production and methanol oxidation reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Wang Z, Zhang M, Song Z, Yaseen M, Huang Z, Wang A, Guisheng Z, Shao S. Synergistic catalytic enhancement of metal-organic framework derived nanoarchitectures decorated on graphene as a high-efficiency bifunctional electrocatalyst for methanol oxidation and oxygen reduction. J Colloid Interface Sci 2022; 624:88-99. [PMID: 35660914 DOI: 10.1016/j.jcis.2022.05.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Designing highly efficient, long-lasting, and cost-effective cathodic and anodic functional materials as a bifunctional electrocatalyst is essential for overcoming the bottleneck in fuel cell development. Herein, a novel two-step synthesis strategy is developed to synthesize metal-organic framework (MOF) derived nitrogen-doped carbon (NC) with improved spatial isolation and a higher loading amount of cobalt (Co) and nickel carbide (Ni3C) nanocrystal decorated on graphene (denoted as Co@NC-Ni3C/G). Benefiting from multiple active sites of high N-doping level, uniform dispersion of Co and Ni3C nanocrystals, and a large active area of graphene, the Co@NC-Ni3C/G hybrids exhibit excellent methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) efficiency in an alkaline environment. For MOR, the optimized Co@NC-Ni3C/G-350 catalyst achieved a current density of 44.8 mA cm-2 at an applied potential of 1.47 V (V vs. RHE), which is significantly higher than Co@NC-Ni3C (42.07 mA cm-2) and Co@NC (24.1 mA cm-2) in 0.5 M methanol + 1.0 M KOH solutions. In addition, during the CO retention test, the Co@NC-Ni3C/G-350 catalyst exhibits excellent CO tolerance capacity. Excitingly, the as-prepared Co@NC-Ni3C/G-350 hybrid exhibits significantly improved ORR catalytic efficiency in terms of positive onset and half-wave potential (Eonset = 0.90 V, E1/2 = 0.830 V vs. RHE), small Tafel slope (34 mV dec-1) and excellent durability (only reduced 0.016 V after 5000 s test). This work provides new insights into MOF-derived functional nanomaterials for anode and cathode co-catalysts for methanol fuel cells.
Collapse
Affiliation(s)
- Zhuokai Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingmei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Zixiang Song
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Maria Yaseen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiye Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - An Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhu Guisheng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Shouyan Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
7
|
Askari MB, Rozati SM, Di Bartolomeo A. Fabrication of Mn3O4-CeO2-rGO as Nanocatalyst for Electro-Oxidation of Methanol. NANOMATERIALS 2022; 12:nano12071187. [PMID: 35407306 PMCID: PMC9002773 DOI: 10.3390/nano12071187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
Abstract
Recently, the use of metal oxides as inexpensive and efficient catalysts has been considered by researchers. In this work, we introduce a new nanocatalyst including a mixed metal oxide, consisting of manganese oxide, cerium oxide, and reduced graphene oxide (Mn3O4-CeO2-rGO) by the hydrothermal method. The synthesized nanocatalyst was evaluated for the methanol oxidation reaction. The synergetic effect of metal oxides on the surface of rGO was investigated. Mn3O4-CeO2-rGO showed an oxidation current density of 17.7 mA/cm2 in overpotential of 0.51 V and 91% stability after 500 consecutive rounds of cyclic voltammetry. According to these results, the synthesized nanocatalyst can be an attractive and efficient option in the methanol oxidation reaction process.
Collapse
Affiliation(s)
- Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran;
| | - Seyed Mohammad Rozati
- Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran;
- Correspondence: (S.M.R.); (A.D.B.)
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello” and Interdepartmental Center NANOMATES, University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (S.M.R.); (A.D.B.)
| |
Collapse
|
8
|
Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution? ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Mathew G, Narayanan N, Abraham DA, De M, Neppolian B. Facile Green Approach for Developing Electrochemically Reduced Graphene Oxide-Embedded Platinum Nanoparticles for Ultrasensitive Detection of Nitric Oxide. ACS OMEGA 2021; 6:8068-8080. [PMID: 33817466 PMCID: PMC8014916 DOI: 10.1021/acsomega.0c05644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO) plays a crucial and important role in cellular physiology and also acts as a signaling molecule for cancer in humans. However, conventional detection methods have their own limitations in the detection of NO at low concentrations because of its high reactivity and low lifetime. Herein, we report a strategy to fabricate Pt nanoparticle-decorated electrochemically reduced graphene oxide (erGO)-modified glassy carbon electrode (GCE) with efficiency to detect NO at a low concentration. For this study, Pt@erGO/GCE was fabricated by employing two different sequential methods [first GO reduction followed by Pt electrodeposition (SQ-I) and Pt electrodeposition followed by GO reduction (SQ-II)]. It was interesting to note that the electrocatalytic current response for SQ-I (184 μA) was ∼15 and ∼3 folds higher than those of the bare GCE (11.7 μA) and SQ-II (61.5 μA). The higher current response was mainly attributed to a higher diffusion coefficient and electrochemically active surface area. The proposed SQ-I electrode exhibited a considerably low LOD of 52 nM (S/N = 3) in a linear range of 0.25-40 μM with a short response time (0.7 s). In addition, the practical analytical applicability of the proposed sensor was also verified.
Collapse
Affiliation(s)
- Georgeena Mathew
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Naresh Narayanan
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Daniel Arulraj Abraham
- National
Laboratory of Solid State Microstructures and Department of Materials
Science and Engineering, College of Engineering and Applied Sciences,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Mrinmoy De
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560012, India
| | - Bernaurdshaw Neppolian
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| |
Collapse
|