1
|
Povari S, Alam S, Somannagari S, Nakka L, Chenna S. Oxidative Dehydrogenation of Ethane with CO 2 over the Fe-Co/Al 2O 3 Catalyst: Experimental Data Assisted AI Models for Prediction of Ethylene Yield. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sangeetha Povari
- Process Engineering and Technology Transfer Department, CSIR-Indian Institute of Chemical Technology, Hyderabad500007, India
| | - Shadab Alam
- Process Engineering and Technology Transfer Department, CSIR-Indian Institute of Chemical Technology, Hyderabad500007, India
| | | | - Lingaiah Nakka
- Catalysis and Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad500007, India
| | - Sumana Chenna
- Process Engineering and Technology Transfer Department, CSIR-Indian Institute of Chemical Technology, Hyderabad500007, India
| |
Collapse
|
2
|
Tasioula M, de Clermont Gallerande E, Theofanidis SA, Longo A, Lomachenko KA, Sahle C, Lemonidou AA. Tandem CO 2 Valorization and Ethane Dehydrogenation: Elucidating the Nature of Highly Selective Iron Oxide Active Sites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Maria Tasioula
- Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124Thessaloniki, Greece
| | | | - Stavros A. Theofanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124Thessaloniki, Greece
- AristEng S.à.r.l., 77, Rue de Merl, L-2146, Luxembourg City, Luxembourg
| | - Alessandro Longo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000Grenoble, France
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146Palermo, Italy
| | - Kirill A. Lomachenko
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000Grenoble, France
| | - Christoph Sahle
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000Grenoble, France
| | - Angeliki A. Lemonidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 54124Thessaloniki, Greece
- Chemical Process & Energy Resource Institute, CPERI/CERTH, 57001Thermi, Thessaloniki, Greece
| |
Collapse
|
3
|
Dou J, Funderburg J, Yang K, Liu J, Chacko D, Zhang K, Harvey AP, Haribal VP, Zhou SJ, Li F. Ce xZr 1–xO 2-Supported CrO x Catalysts for CO 2-Assisted Oxidative Dehydrogenation of Propane─Probing the Active Sites and Strategies for Enhanced Stability. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Dou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Joey Funderburg
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kunran Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Junchen Liu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Dennis Chacko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kui Zhang
- School of Engineering, Newcastle University, Tyne NE1 7RU, U.K
| | - Adam P. Harvey
- School of Engineering, Newcastle University, Tyne NE1 7RU, U.K
| | - Vasudev P. Haribal
- Susteon Inc., 5001 Weston Pkwy, Cary, North Carolina 27513, United States
| | - S. James. Zhou
- Susteon Inc., 5001 Weston Pkwy, Cary, North Carolina 27513, United States
| | - Fanxing Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Tsiotsias AI, Ehrhardt B, Rudolph B, Nodari L, Kim S, Jung W, Charisiou ND, Goula MA, Mascotto S. Bimetallic Exsolved Heterostructures of Controlled Composition with Tunable Catalytic Properties. ACS NANO 2022; 16:8904-8916. [PMID: 35709497 DOI: 10.1021/acsnano.1c11111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we show how the composition of bimetallic Fe-Ni exsolution can be controlled by the nature and concentration of oxygen vacancies in the parental matrix and how this is used to modify the performance of CO2-assisted ethane conversion. Mesoporous A-site-deficient La0.4Sr0.6-αTi0.6Fe0.35Ni0.05O3±δ (0 ≤ α ≤ 0.2) perovskites with substantial specific surface area (>40 m2/g) enabled fast exsolution kinetics (T < 500 °C, t < 1 h) of bimetallic Fe-Ni nanoparticles of increasing size (3-10 nm). Through the application of a multitechnique approach we found that the A-site deficiency determined the concentration of oxygen vacancies associated with iron, which controlled the Fe reduction. Instead of homogeneous bimetallic nanoparticles, the increasing Fe fraction from 37 to 57% led to the emergence of bimodal Fe/Ni3Fe systems. Catalytic tests showed superior stability of our catalysts with respect to commercial Ni/Al2O3. Ethane reforming was found to be the favored pathway, but an increase in selectivity toward ethane dehydrogenation occurred for the systems with a low metallic Fe fraction. The chance to control the reduction and growth processes of bimetallic exsolution offers interesting prospects for the design of advanced catalysts based on bimodal nanoparticle heterostructures.
Collapse
Affiliation(s)
- Anastasios I Tsiotsias
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Benedikt Ehrhardt
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Benjamin Rudolph
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Luca Nodari
- Department of Chemical Science, University of Padua, Via F. Marzolo, 1, 35122 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council. C.so Stati Uniti 4, 35127 Padova, Italy
| | - Seunghyun Kim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nikolaos D Charisiou
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Maria A Goula
- Department of Chemical Engineering, University of Western Macedonia, 50100 Koila, Kozani, Greece
| | - Simone Mascotto
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Theofanidis SA, Kasun Kalhara Gunasooriya GT, Itskou I, Tasioula M, Lemonidou AA. On‐purpose Ethylene Production via CO
2
‐assisted Ethane Oxidative Dehydrogenation: Selectivity Control of Iron Oxide Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stavros A. Theofanidis
- Department of Chemical Engineering Aristotle University of Thessaloniki University Campus 54124 Thessaloniki Greece
- AristEng S.à r.l. 77, Rue de Merl L-2146 Luxembourg City Luxembourg
| | - G. T. Kasun Kalhara Gunasooriya
- Catalysis Theory Center Department of Physics Technical University of Denmark 2800 Kongens Lyngby Denmark
- School of Chemical, Biological and Materials Engineering University of Oklahoma Norman OK 73019 USA
| | - Ioanna Itskou
- Department of Chemical Engineering Aristotle University of Thessaloniki University Campus 54124 Thessaloniki Greece
| | - Maria Tasioula
- Department of Chemical Engineering Aristotle University of Thessaloniki University Campus 54124 Thessaloniki Greece
| | - Angeliki A. Lemonidou
- Department of Chemical Engineering Aristotle University of Thessaloniki University Campus 54124 Thessaloniki Greece
- Chemical Process & Energy Resource Institute CPERI/CERTH 57001 Thermi Thessaloniki Greece
| |
Collapse
|
6
|
New approach for enhancement of light olefin production through oxidative dehydrogenation of propane over doped Mo/TiO2 nanotubes. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Guo M, Feng K, Wang Y, Yan B. Unveiling the Role of Active Oxygen Species in Oxidative Dehydrogenation of Ethane with CO
2
over NiFe/CeO
2. ChemCatChem 2021. [DOI: 10.1002/cctc.202100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Man Guo
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Kai Feng
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Yaning Wang
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Binhang Yan
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
8
|
Raseale S, Marquart W, Jeske K, Prieto G, Claeys M, Fischer N. Supported Fe xNi y catalysts for the co-activation of CO 2 and small alkanes. Faraday Discuss 2021; 229:208-231. [PMID: 33629982 DOI: 10.1039/c9fd00130a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of both the Fe : Ni ratio (5 to 1 : 1) and the relative Lewis acidity of a metal oxide support on catalytic activity, selectivity and stability was investigated in the CO2 mediated oxidative dehydrogenation of ethane (CO2-ODH). To avoid effects of varying pore sizes, shapes and volumes of the supports, chromia and zirconia overlayers were coated onto a common γ-Al2O3 carrier (CrOx@Al2O3 and ZrOx@Al2O3). Separately, oxidic FexNiy alloy precursor nanoparticles were prepared using a nonaqueous surfactant-free method and deposited by sonication onto the carrier. In comparison to previous studies in the field, this synthesis technique yields closely associated iron and nickel increasing the chances for alloy formation. During reduction, a mixture of a bcc and a fcc alloy phase was formed, with the content of bcc increasing with increasing iron content as predicted by the bulk phase diagram. Upon exposure to carbon dioxide at elevated temperatures, the bcc metallic phase is selectively oxidised to an inverse spinel structure via the dissociation of CO2. When exposed to CO2-ODH conditions, the bare ZrOx@Al2O3 support shows no activity. The presence of FeNi phases increases the conversion of ethane and CO2 marginally (<2%) but forms ethylene at high selectivity (SC2H4 > 80%). The CrOx@Al2O3 support shows some initial activity (XC2H6 < 5%) at very high ethylene selectivity (SC2H4 > 90%) but deactivates with time on stream. Comparison of the ethane and carbon dioxide conversions suggests that direct dehydrogenation rather than the oxidative pathway is taking place. When FeNi particles with the highest Fe content are added, the ethane conversion behavior hardly changes, but the CO2 conversion is increased now supporting the stoichiometric CO2-ODH reaction (SC2H4 > 95%). It is therefore evident that a tandem catalyst system between a reducible oxide carrier and the FeNi species is required. Increasing the Ni content results in an increase in activity and stability while changing the dominant reaction pathway to a combination of dry reforming, CO2-ODH and possibly the reverse Boudouard reaction, with the latter countering catalyst deactivation through carbon deposition.
Collapse
Affiliation(s)
- Shaine Raseale
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Wijnand Marquart
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Kai Jeske
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mühlheim an der Ruhr, Germany
| | - Gonzalo Prieto
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mühlheim an der Ruhr, Germany
| | - Michael Claeys
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Nico Fischer
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| |
Collapse
|
9
|
Xie Z, Gomez E, Chen JG. Simultaneously upgrading
CO
2
and light alkanes into value‐added products. AIChE J 2021. [DOI: 10.1002/aic.17249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenhua Xie
- Chemistry Division Brookhaven National Laboratory Upton New York USA
- Department of Chemical Engineering Columbia University New York New York USA
| | - Elaine Gomez
- Department of Chemical Engineering Columbia University New York New York USA
| | - Jingguang G. Chen
- Chemistry Division Brookhaven National Laboratory Upton New York USA
- Department of Chemical Engineering Columbia University New York New York USA
| |
Collapse
|
10
|
Tao L, Choksi TS, Liu W, Pérez-Ramírez J. Synthesizing High-Volume Chemicals from CO 2 without Direct H 2 Input. CHEMSUSCHEM 2020; 13:6066-6089. [PMID: 32946662 DOI: 10.1002/cssc.202001604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Decarbonizing the chemical industry will eventually entail using CO2 as a feedstock for chemical synthesis. However, many chemical syntheses involve CO2 reduction using inputs such as renewable hydrogen. In this review, chemical processes are discussed that use CO2 as an oxidant for upgrading hydrocarbon feedstocks. The captured CO2 is inherently reduced by the hydrocarbon co-reactants without consuming molecular hydrogen or renewable electricity. This CO2 utilization approach can be potentially applied to synthesize eight emission-intensive molecules, including olefins and epoxides. Catalytic systems and reactor concepts are discussed that can overcome practical challenges, such as thermodynamic limitations, over-oxidation, coking, and heat management. Under the best-case scenario, these hydrogen-free CO2 reduction processes have a combined CO2 abatement potential of approximately 1 gigatons per year and avoid the consumption of 1.24 PWh renewable electricity, based on current market demand and supply.
Collapse
Affiliation(s)
- Longgang Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Tej S Choksi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093, Zurich, Switzerland
- Department of Chemical, Biomolecular Engineering National University Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Saito H, Sekine Y. Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization. RSC Adv 2020; 10:21427-21453. [PMID: 35518732 PMCID: PMC9054567 DOI: 10.1039/d0ra03365k] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
Chemical utilization of ethane to produce valuable chemicals has become especially attractive since the expanded utilization of shale gas in the United States and associated petroleum gas in the Middle East. Catalytic conversion to ethylene and aromatic hydrocarbons through non-oxidative dehydrogenation and dehydroaromatization of ethane (EDH and EDA) are potentially beneficial technologies because of their high selectivity to products. The former represents an attractive alternative to conventional thermal cracking of ethane. The latter can produce valuable aromatic hydrocarbons from a cheap feedstock. Nevertheless, further progress in catalytic science and technology is indispensable to implement these processes beneficially. This review summarizes progress that has been achieved with non-oxidative EDH and EDA in terms of the nature of active sites and reaction mechanisms. Briefly, platinum-, chromium- and gallium-based catalysts have been introduced mainly for EDH, including effects of carbon dioxide co-feeding. Efforts to use EDA have emphasized zinc-modified MFI zeolite catalysts. Finally, some avenues for development of catalytic science and technology for ethane conversion are summarized.
Collapse
Affiliation(s)
- Hikaru Saito
- Department of Materials Molecular Science, Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki Aichi 444-8585 Japan +81 564 55 7287
- Department of Applied Chemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
12
|
Wang H, Tsilomelekis G. Catalytic performance and stability of Fe-doped CeO 2 in propane oxidative dehydrogenation using carbon dioxide as an oxidant. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00586j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Propane oxidative dehydrogenation (ODH) in the presence of CO2 was investigated over a series of Fe-doped CeO2 catalysts.
Collapse
Affiliation(s)
- Hedun Wang
- Department of Chemical and Biomolecular Engineering
- Rutgers
- The State University of New Jersey
- USA
| | - George Tsilomelekis
- Department of Chemical and Biomolecular Engineering
- Rutgers
- The State University of New Jersey
- USA
| |
Collapse
|