1
|
Khan MD, Warczak M, Shombe GB, Revaprasadu N, Opallo M. Molecular Precursor Routes for Ag-Based Metallic, Intermetallic, and Metal Sulfide Nanoparticles: Their Comparative ORR Activity Trend at Solid|Liquid and Liquid|Liquid Interfaces. Inorg Chem 2023; 62:8379-8388. [PMID: 37191662 DOI: 10.1021/acs.inorgchem.3c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The electrochemical conversion of oxygen to water is a crucial process required for renewable energy production, whereas its first two-electron step produces a versatile chemical and oxidant─hydrogen peroxide. Improving performance and widening the limited selection of the potential catalysts for this reaction is a step toward the implementation of clean-energy technologies. As silver is known as one of the most effective catalysts of oxygen reduction reaction (ORR), we have designed a suitable molecular precursor pathway for the selective synthesis of metallic (Ag), intermetallic (Ag3Sb), and binary or ternary metal sulfide (Ag2S and AgSbS2) nanomaterials by judicious control of reaction conditions. The decomposition of xanthate precursors under different reaction conditions in colloidal synthesis indicates that carbon-sulfur bond cleavage yields the respective metal sulfide nanomaterials. This is not the case in the presence of trioctylphosphine when the metal-sulfur bond is broken. The synthesized nanomaterials were applied as catalysts of oxygen reduction at the liquid-liquid and solid-liquid interfaces. Ag exhibits the best performance for electrochemical oxygen reduction, whereas the electrocatalytic performance of Ag and Ag3Sb is comparable for peroxide reduction in an alkaline medium. Scanning electrochemical microscopy (SECM) analysis indicates that a flexible 2-electron to 4-electron ORR pathway has been achieved by transforming metallic Ag into intermetallic Ag3Sb.
Collapse
Affiliation(s)
- Malik Dilshad Khan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Magdalena Warczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| | - Ginena Bildard Shombe
- Chemistry Department, University of Dar-es-Salaam, P.O. Box 35061, Dar-es-Salaam 63728, Tanzania
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Neerish Revaprasadu
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Marcin Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
2
|
Wu H, Li R, Dong J, Sun F, Jiang Y, Shen Q. Synthesis, structure and electrochemical H2O2-sensing of two silver(I) complexes with bisbenzimidazole ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Sun F, Dong J, Li R, Jiang Y, Wan T, Wu H. Two binuclear silver(I) complexes containing V‐shaped bis (benzimidazole) ligands: Syntheses, structures and electrochemical sensing towards hydrogen peroxide. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fugang Sun
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Yuxuan Jiang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Tiantian Wan
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| |
Collapse
|
4
|
Mukherjee S, Hou S, Watzele SA, Garlyyev B, Li W, Bandarenka AS, Fischer RA. Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOF‐derived Electrocatalysts. ChemElectroChem 2021. [DOI: 10.1002/celc.202101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soumya Mukherjee
- Technical University Munich: Technische Universitat Munchen Department of Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Shujin Hou
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Sebastian A. Watzele
- Technical University Munich: Technische Universitat Munchen Physik James-Franck-Str. 1 85748 Munich GERMANY
| | - Batyr Garlyyev
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Weijin Li
- Technical University Munich: Technische Universitat Munchen Chemistry Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Aliaksandr S. Bandarenka
- Technical University Munich: Technische Universitat Munchen Physics Lichtenbergstrasse 4 85748 Munich GERMANY
| | - Roland A. Fischer
- Technische Universität München Lehrst. für Anorgan. u. Metallorgan. Chemie Lichtenbergstr. 4 85748 Garching GERMANY
| |
Collapse
|
5
|
Greener route for the removal of toxic heavy metals and synthesis of 14-aryl-14H dibenzo[a,j] xanthene using a novel and efficient Ag-Mg bimetallic MOF as a recyclable heterogeneous nanocatalyst. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Kamal S, Yang TCK. A silver trimesate organic framework as an ultrasensitive surface-enhanced Raman scattering substrate for detection of various organic pollutants. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Moschkowitsch W, Gonen S, Dhaka K, Zion N, Honig H, Tsur Y, Caspary-Toroker M, Elbaz L. Bifunctional PGM-free metal organic framework-based electrocatalysts for alkaline electrolyzers: trends in the activity with different metal centers. NANOSCALE 2021; 13:4576-4584. [PMID: 33600541 DOI: 10.1039/d0nr07875a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to solely rely on renewable and efficient energy sources, reliable energy storage and production systems are required. Hydrogen is considered an ideal solution as it can be produced electrochemically by water electrolysis and renewably while no pollutants are released when consumed. The most common catalysts in electrolyzers are composed of rare and expensive precious group metals. Replacing these materials with Earth-abundant materials is important to make these devices economically viable. Metal organic frameworks are one possible solution. Herein we demonstrate the synthesis and characterization studies of metal benzene-tri-carboxylic acid-based metal-organic frameworks embedded in activated carbon. The conductive composite material was found to be electrocatalytically active for both the oxygen evolution reaction and the hydrogen evolution reaction. Furthermore, several metal organic frameworks sharing the same ligand but with different first-row transition metals (M = Co, Cu, Fe, Mn) were compared, and the trend of their activity is discussed. Cobalt was found to have the highest activity among the studied metal centers, and therefore has the best potential to serve as a bifunctional catalyst for alkaline electrolyzers.
Collapse
Affiliation(s)
- Wenjamin Moschkowitsch
- Department of Chemistry, Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat-Gan 52900, Israel.
| | - Shmuel Gonen
- Department of Chemistry, Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat-Gan 52900, Israel.
| | - Kapil Dhaka
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Noam Zion
- Department of Chemistry, Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat-Gan 52900, Israel.
| | - Hilah Honig
- Department of Chemistry, Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat-Gan 52900, Israel.
| | - Yoed Tsur
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maytal Caspary-Toroker
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Lior Elbaz
- Department of Chemistry, Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|