1
|
Das S, Yadav GD. Tailored design of novel Co 0-Co δ+ dual phase nanoparticles for selective CO 2 hydrogenation to ethanol. J Environ Sci (China) 2025; 149:598-615. [PMID: 39181671 DOI: 10.1016/j.jes.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 08/27/2024]
Abstract
Catalytic hydrogenation of CO2 to ethanol is a promising solution to address the greenhouse gas (GHG) emissions, but many current catalysts face efficiency and cost challenges. Cobalt based catalysts are frequently examined due to their abundance, cost-efficiency, and effectiveness in the reaction, where managing the Co0 to Coδ+ ratio is essential. In this study, we adjusted support nature (Al2O3, MgO-MgAl2O4, and MgO) and reduction conditions to optimize this balance of Co0 to Coδ+ sites on the catalyst surface, enhancing ethanol production. The selectivity of ethanol reached 17.9% in a continuous flow fixed bed micro-reactor over 20 mol% Co@MgO-MgAl2O4 (CoMgAl) catalyst at 270 °C and 3.0 MPa, when reduced at 400 °C for 8 h. Characterisation results coupled with activity analysis confirmed that mild reduction condition (400 °C, 10% H2 balance N2, 8 h) with intermediate metal support interaction favoured the generation of partially reduced Co sites (Coδ+ and Co0 sites in single atom) over MgO-MgAl2O4 surface, which promoted ethanol synthesis by coupling of dissociative (CHx*)/non-dissociative (CHxO*) intermediates, as confirmed by density functional theory analysis. Additionally, the CoMgAl, affordably prepared through the coprecipitation method, offers a potential alternative for CO2 hydrogenation to yield valuable chemicals.
Collapse
Affiliation(s)
- Subhasis Das
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga 400019, Mumbai, India
| | - Ganapati D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga 400019, Mumbai, India.
| |
Collapse
|
2
|
Liu Q, Tan X, Liao X, Lv J, Li X, Chen Z, Yang Y, Wu A, Zhao Y, Wu HB. Self-Limited Formation of Cobalt Nanoparticles for Spontaneous Hydrogen Production through Hydrazine Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311741. [PMID: 38470196 DOI: 10.1002/smll.202311741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/09/2024] [Indexed: 03/13/2024]
Abstract
Hydrogen (H2) has emerged as a highly promising energy carrier owing to its remarkable energy density and carbon emission-free properties. However, the widespread application of H2 fuel has been limited by the difficulty of storage. In this work, spontaneous electrochemical hydrogen production is demonstrated using hydrazine (N2H4) as a liquid hydrogen storage medium and enabled by a highly active Co catalyst for hydrazine electrooxidation reaction (HzOR). The HzOR electrocatalyst is developed by a self-limited growth of Co nanoparticles from a Co-based zeolitic imidazolate framework (ZIF), exhibiting abundant defective surface atoms as active sites for HzOR. Notably, these self-limited Co nanoparticles exhibit remarkable HzOR activity with a negative working potential of -0.1 V (at 10 mA cm-2) in 0.1 m N2H4/1 m KOH electrolyte. Density functional theory (DFT) calculations are employed to validate the superior performance of low-coordinated Co active sites in facilitating HzOR. By taking advantage of the potential difference between HzOR and the hydrogen evolution reaction (HER), a novel HzOR||HER electrochemical system is developed to spontaneously produce H2 without external energy input. Overall, the work offers valuable guidance for developing active HzOR catalyst. The novel HzOR||HER electrochemical system represents a promising and innovative solution for energy-efficient hydrogen production.
Collapse
Affiliation(s)
- Qian Liu
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaobin Liao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiabao Lv
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaotong Li
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zerui Chen
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yue Yang
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Angjian Wu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314031, P. R. China
- Baima Lake Laboratory, Hangzhou, 310053, P. R. China
| | - Yan Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hao Bin Wu
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
3
|
Gou Z, Chen S, Zheng D, Wang X, Xie H, Zhou G. Support Nano‐Co/CeO
2‐δ
Catalyst for CO
2
Hydromethanation. ChemistrySelect 2023. [DOI: 10.1002/slct.202203627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Zhenqiong Gou
- Chongqing Key Laboratory of Catalysis and Environmental New Materials Department of Chemical Engineering Chongqing Technology and Business University Chongqing 400067 China
| | - Shuang Chen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment Ministry of Education Chongqing 400067 China
| | - Daohui Zheng
- Chongqing Key Laboratory of Catalysis and Environmental New Materials Department of Chemical Engineering Chongqing Technology and Business University Chongqing 400067 China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Catalysis and Environmental New Materials Department of Chemical Engineering Chongqing Technology and Business University Chongqing 400067 China
| | - Hongmei Xie
- Chongqing Key Laboratory of Catalysis and Environmental New Materials Department of Chemical Engineering Chongqing Technology and Business University Chongqing 400067 China
| | - Guilin Zhou
- Chongqing Key Laboratory of Catalysis and Environmental New Materials Department of Chemical Engineering Chongqing Technology and Business University Chongqing 400067 China
- Engineering Research Center for Waste Oil Recovery Technology and Equipment Ministry of Education Chongqing 400067 China
| |
Collapse
|
4
|
Liang X, Fu N, Yao S, Li Z, Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J Am Chem Soc 2022; 144:18155-18174. [PMID: 36175359 DOI: 10.1021/jacs.1c12642] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom-site catalysts (SASCs) featuring maximized atom utilization and isolated active sites have progressed tremendously in recent years as a highly prosperous branch of catalysis research. Varieties of SASCs have been developed that show excellent performance in many catalytic applications. The major goal of SASC research is to establish feasible synthetic strategies for the preparation of high-performance catalysts, to achieve an in-depth understanding of the active-site structures and catalytic mechanisms, and to develop practical catalysts with industrial value. This Perspective describes the up-to-date development of SASCs and related catalysts, such as dual-atom-site catalysts (DASCs) and nano-single-atom-site catalysts (NSASCs), analyzes the current challenges encountered by these catalysts for industrial applications, and proposes their possible future development path.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shuangchao Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.,Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
5
|
Tavares M, Westphalen G, Araujo Ribeiro de Almeida JM, Romano PN, Sousa-Aguiar EF. Modified fischer-tropsch synthesis: A review of highly selective catalysts for yielding olefins and higher hydrocarbons. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.978358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Global warming, fossil fuel depletion, climate change, as well as a sudden increase in fuel price have motivated scientists to search for methods of storage and reduction of greenhouse gases, especially CO2. Therefore, the conversion of CO2 by hydrogenation into higher hydrocarbons through the modified Fischer–Tropsch Synthesis (FTS) has become an important topic of current research and will be discussed in this review. In this process, CO2 is converted into carbon monoxide by the reverse water-gas-shift reaction, which subsequently follows the regular FTS pathway for hydrocarbon formation. Generally, the nature of the catalyst is the main factor significantly influencing product selectivity and activity. Thus, a detailed discussion will focus on recent developments in Fe-based, Co-based, and bimetallic catalysts in this review. Moreover, the effects of adding promoters such as K, Na, or Mn on the performance of catalysts concerning the selectivity of olefins and higher hydrocarbons are assessed.
Collapse
|
6
|
Gäßler M, Stahl J, Schowalter M, Pokhrel S, Rosenauer A, Mädler L, Güttel R. The Impact of Support Material of Cobalt‐Based Catalysts Prepared by Double Flame Spray Pyrolysis on CO2 Methanation Dynamics. ChemCatChem 2022. [DOI: 10.1002/cctc.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Max Gäßler
- Ulm University: Universitat Ulm Institute of Chemical Engineering GERMANY
| | - Jakob Stahl
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Marco Schowalter
- University of Bremen: Universitat Bremen Institute of Solid State Physics GERMANY
| | - Suman Pokhrel
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Andreas Rosenauer
- University of Bremen: Universitat Bremen Institute of Solid State Physics GERMANY
| | - Lutz Mädler
- University of Bremen: Universitat Bremen Faculty of Production Engineering GERMANY
| | - Robert Güttel
- Universitat Ulm Institute of Chemical Process Engineering Albert-Einstein-Allee 11 89081 Ulm GERMANY
| |
Collapse
|
7
|
Song M, Huang Z, Chen B, Liu S, Ullah S, Cai D, Zhan G. Reduction treatment of nickel phyllosilicate supported Pt nanocatalysts determining product selectivity in CO2 hydrogenation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Straß‐Eifert A, Sheppard TL, Damsgaard CD, Grunwaldt J, Güttel R. Stability of Cobalt Particles In and Outside HZSM‐5 under CO Hydrogenation Conditions Studied by
ex situ
and
in situ
Electron Microscopy. ChemCatChem 2021. [DOI: 10.1002/cctc.202001533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Straß‐Eifert
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian D. Damsgaard
- DTU Nanolab and DTU Physics Technical University of Denmark Fysikvej – Building 307 2800 Kongens Lyngby Denmark
| | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Robert Güttel
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
9
|
Ashok J, Pati S, Hongmanorom P, Tianxi Z, Junmei C, Kawi S. A review of recent catalyst advances in CO2 methanation processes. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.07.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|