1
|
Zang Y, Zhang Z, Qu J, Gao F, Gu J, Wei T, Lin X. K-guided selective regulation mechanism for CO 2 hydrogenation over Ni/CeO 2 catalyst. J Colloid Interface Sci 2024; 658:167-178. [PMID: 38100973 DOI: 10.1016/j.jcis.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Regulating the selectivity between CO and CH4 during CO2 hydrogenation is a challenging research topic. Previous research has indicated that potassium (K) modification can adjust the product selectivity by regulating the adsorption strength of formate/CO* intermediates. Going beyond the regulation mechanism described above, this study proposes a K-guided selectivity control method based on the regulation of key intermediates HCO*/H3CO* for Ni catalysts supported on reducible carrier CeO2. By incorporating K, the CO selectivity of CO2 hydrogenation shifts from around 25.4% for Ni/CeO2 to approximately 93.8% for Ni/CeO2-K. This can be attributed to K modification causes electron aggregation in the bonding regions of HCO* and H3CO* intermediates, thus enhancing their adsorption strength. Consequently, the reaction pathway from HCO*/H3CO* to CH4 is limited, favoring the decomposition of formates to CO products. Moreover, the addition of K leads to a moderate decrease in CO2 conversion from 55.2% to 48.6%, which still surpasses values reported in most other studies. This reduction is associated with a decline in reducible Ni species and oxygen vacancy concentration in Ni/CeO2-K. As a result, the adsorption capacity for CO2 and H2 reduces, ultimately reducing CO2 hydrogenation activity.
Collapse
Affiliation(s)
- Yunhao Zang
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Ziyi Zhang
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jiangying Qu
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Feng Gao
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Jianfeng Gu
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Taipeng Wei
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Xuetan Lin
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
2
|
Visser NL, Verschoor JC, Smulders LC, Mattarozzi F, Morgan DJ, Meeldijk JD, van der Hoeven JE, Stewart JA, Vandegehuchte BD, de Jongh PE. Influence of Carbon Support Surface Modification on the Performance of Nickel Catalysts in Carbon Dioxide Hydrogenation. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Merkouri LP, Martín-Espejo JL, Bobadilla LF, Odriozola JA, Duyar MS, Reina TR. Flexible NiRu Systems for CO 2 Methanation: From Efficient Catalysts to Advanced Dual-Function Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030506. [PMID: 36770467 PMCID: PMC9921773 DOI: 10.3390/nano13030506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/09/2023]
Abstract
CO2 emissions in the atmosphere have been increasing rapidly in recent years, causing global warming. CO2 methanation reaction is deemed to be a way to combat these emissions by converting CO2 into synthetic natural gas, i.e., CH4. NiRu/CeAl and NiRu/CeZr both demonstrated favourable activity for CO2 methanation, with NiRu/CeAl approaching equilibrium conversion at 350 °C with 100% CH4 selectivity. Its stability under high space velocity (400 L·g-1·h-1) was also commendable. By adding an adsorbent, potassium, the CO2 adsorption capability of NiRu/CeAl was boosted, allowing it to function as a dual-function material (DFM) for integrated CO2 capture and utilisation, producing 0.264 mol of CH4/kg of sample from captured CO2. Furthermore, time-resolved operando DRIFTS-MS measurements were performed to gain insights into the process mechanism. The obtained results demonstrate that CO2 was captured on basic sites and was also dissociated on metallic sites in such a way that during the reduction step, methane was produced by two different pathways. This study reveals that by adding an adsorbent to the formulation of an effective NiRu methanation catalyst, advanced dual-function materials can be designed.
Collapse
Affiliation(s)
| | - Juan Luis Martín-Espejo
- Department of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Luis Francisco Bobadilla
- Department of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - José Antonio Odriozola
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
- Department of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Melis Seher Duyar
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Tomas Ramirez Reina
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
- Department of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| |
Collapse
|
4
|
Promotion of Ru or Ni on Alumina Catalysts with a Basic Metal for CO 2 Hydrogenation: Effect of the Type of Metal (Na, K, Ba). NANOMATERIALS 2022; 12:nano12071052. [PMID: 35407170 PMCID: PMC9000749 DOI: 10.3390/nano12071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023]
Abstract
Ru and Ni on alumina catalysts have been promoted with a 10 wt% of alkali metal (K or Na) or alkaline earth metal (Ba) and tested in CO2 methanation. For the catalyst consisting of Ni and Ba, the variation of Ba loading while keeping Ni loading constant was studied. The promotion in terms of enhanced CH4 yield was found only for the addition of barium to 15 wt% Ni/Al2O3. In contrast, K and Na addition increased the selectivity to CO while decreasing conversion. For the Ru-based catalyst series, no enhancement in conversion or CH4 yield was attained by any of the alkaline metals. CO2 temperature-programed desorption (CO2-TPD) revealed that the amount of chemisorbed CO2 increased significantly after the addition of the base metal. The reactivity of COx ad-species for each catalyst was assessed by temperature-programed surface reaction (TPSR). The characterization revealed that the performance in the Sabatier reaction was a result of the interplay between the amount of chemisorbed CO2 and the reactivity of the COx ad-species, which was maximized for the (10%Ba)15%Ni/Al2O3 catalyst.
Collapse
|
5
|
Ghatak A, Das M. The Recent Progress on Supported and Recyclable Nickel Catalysts towards Organic Transformations: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202100727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Avishek Ghatak
- Department of Chemistry, Dr. A. P. J. Abdul Kalam Government College West Bengal State University) Kolkata 700156 India
| | - Madhurima Das
- Basic Science Department, Pailan College of Management and Technology Maulana Abul Kalam Azad University of Technology) Kolkata 700104 India
| |
Collapse
|
6
|
Promising Catalytic Systems for CO2 Hydrogenation into CH4: A Review of Recent Studies. Processes (Basel) 2020. [DOI: 10.3390/pr8121646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The increasing utilization of renewable sources for electricity production turns CO2 methanation into a key process in the future energy context, as this reaction allows storing the temporary renewable electricity surplus in the natural gas network (Power-to-Gas). This kind of chemical reaction requires the use of a catalyst and thus it has gained the attention of many researchers thriving to achieve active, selective and stable materials in a remarkable number of studies. The existing papers published in literature in the past few years about CO2 methanation tackled the catalysts composition and their related performances and mechanisms, which served as a basis for researchers to further extend their in-depth investigations in the reported systems. In summary, the focus was mainly in the enhancement of the synthesized materials that involved the active metal phase (i.e., boosting its dispersion), the different types of solid supports, and the frequent addition of a second metal oxide (usually behaving as a promoter). The current manuscript aims in recapping a huge number of trials and is divided based on the support nature: SiO2, Al2O3, CeO2, ZrO2, MgO, hydrotalcites, carbons and zeolites, and proposes the main properties to be kept for obtaining highly efficient carbon dioxide methanation catalysts.
Collapse
|
7
|
Abstract
A catalyst production method that enables the independent tailoring of the structural properties of the catalyst, such as pore size, metal particle size, metal loading or surface area, allows to increase the efficiency of a catalytic process. Such tailoring can help to make the valorization of CO2 into synthetic fuels on Ni catalysts competitive to conventional fossil fuel production. In this work, a new spray-drying method was used to produce Ni catalysts supported on SiO2 and Al2O3 nanoparticles with tunable properties. The influence of the primary particle size of the support, different metal loadings, and heat treatments were applied to investigate the potential to tailor the properties of catalysts. The catalysts were examined with physical and chemical characterization methods, including X-ray diffraction, temperature-programmed reduction, and chemisorption. A temperature-scanning technique was applied to screen the catalysts for CO2 methanation. With the spray-drying method presented here, well-organized porous spherical nanoparticles of highly dispersed NiO nanoparticles supported on silica with tunable properties were produced and characterized. Moreover, the pore size, metal particle size, and metal loading can be controlled independently, which allows to produce catalyst particles with the desired properties. Ni/SiO2 catalysts with surface areas of up to 40 m2 g−1 with Ni crystals in the range of 4 nm were produced, which exhibited a high activity for the CO2 methanation.
Collapse
|
8
|
Wu HC, Chen TC, Wu JH, Pao CW, Chen CS. Influence of sodium-modified Ni/SiO 2 catalysts on the tunable selectivity of CO 2 hydrogenation: Effect of the CH 4 selectivity, reaction pathway and mechanism on the catalytic reaction. J Colloid Interface Sci 2020; 586:514-527. [PMID: 33162050 DOI: 10.1016/j.jcis.2020.10.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022]
Abstract
CO2 hydrogenation over Ni/SiO2 catalysts with and without Na additives was investigated in terms of the catalytic activity, selectivity of CO2 methanation and reaction mechanism. Na additives could cause the formation of Na2O species that might deposit on the Ni surface of Ni/SiO2 (NiNax/SiO2). When the Ni metal is partially covered with Na2O species, a highly positive charge on the Ni metal could occur compared to the original Ni/SiO2 catalyst. The addition of Na to the Ni/SiO2 catalyst could influence selectivity toward CO formation. The adsorbed formic acid is the major intermediate on the Ni/SiO2 catalyst during CO2 hydrogenation. The formic acid species might decompose into adsorbed CO complexes in the forms of linear CO, bridged CO and multibonded CO. CH4 formation should be ascribed to the hydrogenation of these adsorbed CO complexes. The Ni/SiO2 catalyst with the Na additive might have very weak ability for H2 and CO adsorption, thus making it difficult for CO methanation to occur. The hydrogen carbonate species adsorbed on the NiNax/SiO2 catalysts were proposed to be the key intermediate, and they might decompose to CO or be hydrogenated to form CH4.
Collapse
Affiliation(s)
- Hung-Chi Wu
- Center for General Education, Chang Gung University, 259, Wen-Hua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital Linkou, 5, Fusing St, Guishan Dist, Taoyuan City 33302, Taiwan, Republic of China
| | - Jia-Huang Wu
- Center for General Education, Chang Gung University, 259, Wen-Hua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Ching-Shiun Chen
- Center for General Education, Chang Gung University, 259, Wen-Hua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Department of Pathology, Chang Gung Memorial Hospital Linkou, 5, Fusing St, Guishan Dist, Taoyuan City 33302, Taiwan, Republic of China.
| |
Collapse
|
9
|
Ra EC, Kim KY, Kim EH, Lee H, An K, Lee JS. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02930] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eun Cheol Ra
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwang Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Hyup Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hojeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwangjin An
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
The Role of Alkali and Alkaline Earth Metals in the CO2 Methanation Reaction and the Combined Capture and Methanation of CO2. Catalysts 2020. [DOI: 10.3390/catal10070812] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CO2 methanation has great potential for the better utilization of existing carbon resources via the transformation of spent carbon (CO2) to synthetic natural gas (CH4). Alkali and alkaline earth metals can serve both as promoters for methanation catalysts and as adsorbent phases upon the combined capture and methanation of CO2. Their promotion effect during methanation of carbon dioxide mainly relies on their ability to generate new basic sites on the surface of metal oxide supports that favour CO2 chemisorption and activation. However, suppression of methanation activity can also occur under certain conditions. Regarding the combined CO2 capture and methanation process, the development of novel dual-function materials (DFMs) that incorporate both adsorption and methanation functions has opened a new pathway towards the utilization of carbon dioxide emitted from point sources. The sorption and catalytically active phases on these types of materials are crucial parameters influencing their performance and stability and thus, great efforts have been undertaken for their optimization. In this review, we present some of the most recent works on the development of alkali and alkaline earth metal promoted CO2 methanation catalysts, as well as DFMs for the combined capture and methanation of CO2.
Collapse
|