1
|
State-of-the-Art Review of Oxidative Dehydrogenation of Ethane to Ethylene over MoVNbTeOx Catalysts. Catalysts 2023. [DOI: 10.3390/catal13010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ethylene is mainly produced by steam cracking of naphtha or light alkanes in the current petrochemical industry. However, the high-temperature operation results in high energy demands, high cost of gas separation, and huge CO2 emissions. With the growth of the verified shale gas reserves, oxidative dehydrogenation of ethane (ODHE) becomes a promising process to convert ethane from underutilized shale gas reserves to ethylene at a moderate reaction temperature. Among the catalysts for ODHE, MoVNbTeOx mixed oxide has exhibited superior catalytic performance in terms of ethane conversion, ethylene selectivity, and/or yield. Accordingly, the process design is compact, and the economic evaluation is more favorable in comparison to the mature steam cracking processes. This paper aims to provide a state-of-the-art review on the application of MoVNbTeOx catalysts in the ODHE process, involving the origin of MoVNbTeOx, (post-) treatment of the catalyst, material characterization, reaction mechanism, and evaluation as well as the reactor design, providing a comprehensive overview of M1 MoVNbTeOx catalysts for the oxidative dehydrogenation of ethane, thus contributing to the understanding and development of the ODHE process based on MoVNbTeOx catalysts.
Collapse
|
2
|
Zenkovets GA, Shutilov AA, Bondareva VM, Sobolev VI, Prosvirin IP, Suprun EA, Ishchenko AV, Marchuk AS, Tsybulya SV, Gavrilov VY. Effect of Gadolinium Additives on the Active Phase Morphology and Physicochemical and Catalytic Properties of MoVSbNbGdOx/SiO2 Catalysts in the Oxidative Dehydrogenation of Ethane to Ethylene. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422060179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Chen Y, Qian S, Feng K, Li Z, Yan B, Cheng Y. Determination of Highly Active and Selective Surface for the Oxidative Dehydrogenation of Ethane over Phase-pure M1 MoVNbTeOx Catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Mixed Metal Oxides of M1 MoVNbTeOx and TiO2 as Composite Catalyst for Oxidative Dehydrogenation of Ethane. Catalysts 2022. [DOI: 10.3390/catal12010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Composite catalysts of mixed metal oxides were prepared by mixing a phase-pure M1 MoVNbTeOx with anatase-phase TiO2. Two methods were used to prepare the composite catalysts (the simple physically mixed or sol-gel method) for the improvement of the catalytic performance in the oxidative dehydrogenation of ethane (ODHE) process. The results showed that TiO2 particles with a smaller particle size were well dispersed on the M1 surface for the sol-gel method, which presented an excellent activity for ODHE. At the same operating condition (i.e., the contact time of 7.55 gcat·h/molC2H6 and the reaction temperature of 400 °C), the M1-TiO2-SM and M1-TiO2-PM achieved the space time yields of 0.67 and 0.52 kgC2H4/kgcat/h, respectively, which were about ~76% and ~35% more than that of M1 catalyst (0.38 kgC2H4/kgcat/h), respectively. The BET, ICP, XRD, TEM, SEM, H2-TPR, C2H6-TPSR, and XPS techniques were applied to characterize the catalysts. It was noted that the introduction of TiO2 raised the V5+ abundance on the catalyst surface as well as the reactivity of active oxygen species, which made contribution to the promotion of the catalytic performance. The surface morphology and crystal structure of used catalysts of either M1-TiO2-SM or M1-TiO2-PM remained stable as each fresh catalyst after 24 h time-on-stream tests.
Collapse
|
5
|
Dang D, Chen Y, Chen X, Feng K, Yan B, Cheng Y. Phase-pure M1 MoVNbTeOx/TiO2 nanocomposite catalysts: high catalytic performance for oxidative dehydrogenation of ethane. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01749g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of TiO2 can improve the catalytic performance of phase-pure M1 MoVNbTeOx in the ODHE process, in which the STY enhancement of M1/40TiO2 at 400 °C and W/F = 7.55 gcat h molC2H6−1 reached ∼76%.
Collapse
Affiliation(s)
- Dan Dang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Yuxin Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kai Feng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Binhang Yan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|