Li Y, Xue Q, Zhao X, Ma D. Total Syntheses of Diepoxy-
ent-Kaurane Diterpenoids Enabled by a Bridgehead-Enone-Initiated Intramolecular Cycloaddition.
J Am Chem Soc 2025;
147:1197-1206. [PMID:
39726142 DOI:
10.1021/jacs.4c15004]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Here, we report the enantioselective total syntheses of four diepoxy-ent-kaurane diterpenoids including (-)-Macrocalin B, (-)-Acetyl-macrocalin B, and (-)-Isoadenolin A and the revised structure of (-)-Phyllostacin I, which hinges on the strategic design of a regioselective and stereospecific trapping of a highly reactive [3.2.1]-bridgehead enone intermediate via a tethered intramolecular Diels-Alder reaction. Combined experimental and computational studies demonstrated that the novel bridgehead-enone-initiated intramolecular cycloaddition could proceed in a stepwise diradical mechanism. Although the key step partially led to unexpected [2 + 2]-cycloaddition outcomes, we ultimately implemented an unprecedented TiIII-catalyzed cyclobutane ring-opening-annulation radical cascade to reassemble a keystone pentacyclic core. Coupled with a sequence of organized oxidation-state manipulations and an efficient late-stage assembly of the C-7,20 hemiketal bridge, our strategy would streamline the synthetic design of diepoxy-ent-kaurane diterpenoids and pave the way for their modular syntheses as well as highlight the powerful utility of [3.2.1]-bridgehead enone intermediates in the construction of structural complexity.
Collapse