1
|
Su C, Zou S, Li J, Wang L, Huang J. Supporting Nano Catalysts for the Selective Hydrogenation of Biomass-derived Compounds. CHEMSUSCHEM 2024; 17:e202400602. [PMID: 38760993 DOI: 10.1002/cssc.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The selective hydrogenation of biomass derivatives presents a promising pathway for the production of high-value chemicals and fuels, thereby reducing reliance on traditional petrochemical industries. Recent strides in catalyst nanostructure engineering, achieved through tailored support properties, have significantly enhanced the hydrogenation performance in biomass upgrading. A comprehensive understanding of biomass selective upgrading reactions and the current advancement in supported catalysts is crucial for guiding future processes in renewable biomass. This review aims to summarize the development of supported nanocatalysts for the selective hydrogenation of the US DOE's biomass platform compounds derivatives into valuable upgraded molecules. The discussion includes an exploration of the reaction mechanisms and conditions in catalytic transfer hydrogenation (CTH) and high-pressure hydrogenation. By thoroughly examining the tailoring of supports, such as metal oxide catalysts and porous materials, in nano-supported catalysts, we elucidate the promoting role of nanostructure engineering in biomass hydrogenation. This endeavor seeks to establish a robust theoretical foundation for the fabrication of highly efficient catalysts. Furthermore, the review proposes prospects in the field of biomass utilization and address application bottlenecks and industrial challenges associated with the large-scale utilization of biomass.
Collapse
Affiliation(s)
- Chunjing Su
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Sibei Zou
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales, 2006, Sydney, Australia
| | - Jiaquan Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2008, Sydney, Australia
| |
Collapse
|
2
|
Dutta S. Catalytic Transformation of Carbohydrates into Renewable Organic Chemicals by Revering the Principles of Green Chemistry. ACS OMEGA 2024; 9:26805-26825. [PMID: 38947803 PMCID: PMC11209912 DOI: 10.1021/acsomega.4c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Adherence to the principles of green chemistry in a biorefinery setting ensures energy efficiency, reduces the consumption of materials, simplifies reactor design, and rationalizes the process parameters for synthesizing affordable organic chemicals of desired functional efficacy and ingrained sustainability. The green chemistry metrics facilitate assessing the relative merits and demerits of alternative synthetic pathways for the targeted product(s). This work elaborates on how green chemistry has emerged as a transformative framework and inspired innovations toward the catalytic conversion of biomass-derived carbohydrates into fuels, chemicals, and synthetic polymers. Specific discussions have been incorporated on the judicious selection of feedstock, reaction parameters, reagents (stoichiometric or catalytic), and other synthetic auxiliaries to obtain the targeted product(s) in desired selectivity and yield. The prospects of a carbohydrate-centric biorefinery have been emphasized and research avenues have been proposed to eliminate the remaining roadblocks. The analyses presented in this review will steer to developing superior synthetic strategies and processes for envisaging a sustainable bioeconomy centered on biomass-derived carbohydrates.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore-575025, Karnataka, India
| |
Collapse
|
3
|
Dong J, Mo Q, Xiong X, Zhang L. Two-Dimensional Porphyrinic Metal-Organic Framework Composites as a Photocatalytic Platform for Chemoselective Hydrogenation. Inorg Chem 2023; 62:21432-21442. [PMID: 38047769 DOI: 10.1021/acs.inorgchem.3c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Chemoselective hydrogenation with high efficiency under ambient conditions remains a great challenge. Herein, an efficient photocatalyst, the 2D porphyrin metal-organic framework composite AmPy/Pd-PPF-1(Cu), featuring AmPy (1-aminopyrene) sitting axially on a paddle-wheel unit, has been rationally fabricated. The 2D AmPy/Pd-PPF-1(Cu) composite acts as a photocatalytic platform, promoting the selective hydrogenation of quinolines to tetrahydroquinolines with a yield up to 99%, in which ammonia borane serves as the hydrogen donor. The AmPy molecules coordinated on a 2D MOF not only enhance the light absorption capacity but also adjust the layer spacing without affecting the network structure of 2D Pd-PPF-1(Cu) nanosheets. Through deuterium-labeling experiments, in situ X-ray photoelectron spectroscopy, electron paramagnetic resonance studies, and density functional theory calculations, it is disclosed that Cu paddle-wheel units in 2D AmPy/Pd-PPF-1(Cu) nanosheets behave as the active site for transfer hydrogenation, and metalloporphyrin ligand and axial aminopyrene molecules can enhance the light absorption capacity and excite photogenerated electrons to Cu paddle-wheel units, assisting in photocatalysis.
Collapse
Affiliation(s)
- Jurong Dong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaohong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Matveeva VG, Bronstein LM. Design of Bifunctional Nanocatalysts Based on Zeolites for Biomass Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2274. [PMID: 37630859 PMCID: PMC10458776 DOI: 10.3390/nano13162274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Bifunctional catalysts consisting of metal-containing nanoparticles (NPs) and zeolite supports have received considerable attention due to their excellent catalytic properties in numerous reactions, including direct (biomass is a substrate) and indirect (platform chemical is a substrate) biomass processing. In this short review, we discuss major approaches to the preparation of NPs in zeolites, concentrating on methods that allow for the best interplay (synergy) between metal and acid sites, which is normally achieved for small NPs well-distributed through zeolite. We focus on the modification of zeolites to provide structural integrity and controlled acidity, which can be accomplished by the incorporation of certain metal ions or elements. The other modification avenue is the adjustment of zeolite morphology, including the creation of numerous defects for the NP entrapment and designed hierarchical porosity for improved mass transfer. In this review, we also provide examples of synergy between metal and acid sites and emphasize that without density functional theory calculations, many assumptions about the interactions between active sites remain unvalidated. Finally, we describe the most interesting examples of direct and indirect biomass (waste) processing for the last five years.
Collapse
Affiliation(s)
- Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia;
- Regional Technological Centre, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia;
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Ratthiwal J, Lazaro N, Pineda A, Esposito R, ALOthman ZA, Reubroycharoen P, Luque R. Furfural conversion over calcined Ti and Fe metal-organic frameworks under continuous flow conditions. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
|
6
|
Sun R, Tian Y, Xiao L, Bukhtiyarova GA, Wu W. Porous Hollow Nanostructure Promoting the Catalytic Performance and Stability of Ni 3P in Furfural Hydrogenation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Ruyu Sun
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Ye Tian
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Linfei Xiao
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | | | - Wei Wu
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
7
|
Chen W, Peng Q, Fan G, Cheng Q, Tu M, Song G. Catalytic transfer hydrogenation of furfural to furfuryl alcohol over Al-containing ferrihydrite. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Luo J, Cheng Y, Niu H, Wang T, Liang C. Efficient Cu/FeOx catalyst with developed structure for catalytic transfer hydrogenation of furfural. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Ortuño MA, Rellán-Piñeiro M, Luque R. Computational Mechanism of Methyl Levulinate Conversion to γ-Valerolactone on UiO-66 Metal Organic Frameworks. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:3567-3573. [PMID: 35360051 PMCID: PMC8942187 DOI: 10.1021/acssuschemeng.1c08021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are gaining importance in the field of biomass conversion and valorization due to their porosity, well-defined active sites, and broad tunability. But for a proper catalyst design, we first need detailed insight of the system at the atomic level. Herein, we present the reaction mechanism of methyl levulinate to γ-valerolactone on Zr-based UiO-66 by means of periodic density functional theory (DFT). We demonstrate the role of Zr-based nodes in the catalytic transfer hydrogenation (CTH) and cyclization steps. From there, we perform a computational screening to reveal key catalyst modifications to improve the process, such as node doping and linker exchange.
Collapse
Affiliation(s)
- Manuel A Ortuño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Chemical Research of Catalonia, ICIQ, and the Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos Rellán-Piñeiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14014 Córdoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation
| |
Collapse
|
11
|
Renewable bio-based routes to γ-valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Campisi S, Motta D, Barlocco I, Stones R, Chamberlain TW, Chutia A, Dimitratos N, Villa A. Furfural Adsorption and Hydrogenation at the Oxide‐Metal Interface: Evidence of the Support Influence on the Selectivity of Iridium‐Based Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202101700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sebastiano Campisi
- Dipartimento di Chimica Università degli Studi di Milano via Golgi 19 20133 Milano Italy
| | - Davide Motta
- Cardiff Catalysis Institute School of Chemistry Cardiff University Cardiff CF10 3AT UK
| | - Ilaria Barlocco
- Dipartimento di Chimica Università degli Studi di Milano via Golgi 19 20133 Milano Italy
| | - Rebecca Stones
- Institute of Process Research & Development School of Chemistry University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas W. Chamberlain
- Institute of Process Research & Development School of Chemistry University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | | | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale e dei Materiali ALMA MATER STUDIORUM Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Alberto Villa
- Dipartimento di Chimica Università degli Studi di Milano via Golgi 19 20133 Milano Italy
| |
Collapse
|
13
|
Osatiashtiani A, Orr SA, Durndell L, Collado García I, Merenda A, Lee AF, Wilson K. Liquid phase catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over ZrO 2/SBA-15. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00538g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Valerolactone (GVL) is an important bio-derived platform molecule whose atom- and energy efficient, and scalable, catalytic synthesis is highly desirable. Catalytic transfer hydrogenation (CTH) of ethyl levulinate (EL) to γ-valerolactone...
Collapse
|
14
|
More GS, Shivhare A, Kaur SP, Dhilip Kumar TJ, Srivastava R. Catalytic interplay of metal ions (Cu 2+, Ni 2+, and Fe 2+) in MFe 2O 4 inverse spinel catalysts for enhancing the activity and selectivity during selective transfer hydrogenation of furfural into 2-methylfuran. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00970f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The substitution of Fe2+ from the octahedral sites of the Fe3O4 inverse spinel with Cu2+ and Ni2+ ions can be an effective strategy to synthesize cost-effective mixed metal oxide catalysts for the selective CTH of biomass-derived FUR to 2-MF.
Collapse
Affiliation(s)
- Ganesh Sunil More
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Atal Shivhare
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Surinder Pal Kaur
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - T. J. Dhilip Kumar
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| |
Collapse
|
15
|
Kurniawan E, Hara T, Permana Y, Kojima T, Ichikuni N, Shimazu S. Creation of Highly Reducible CuO Species by High-Temperature Calcination of a Cu-Al Layered Double Hydroxide: Selective Hydrogenation of Furfural into Furfuryl Alcohol with Formic Acid. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Enggah Kurniawan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| | - Takayoshi Hara
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| | - Yessi Permana
- Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, 40132, Indonesia
| | - Takashi Kojima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| | - Nobuyuki Ichikuni
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| | - Shogo Shimazu
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi, Inage, Chiba, 263-8522, Japan
| |
Collapse
|
16
|
Shivhare A, Kumar A, Srivastava R. The Size‐Dependent Catalytic Performances of Supported Metal Nanoparticles and Single Atoms for the Upgrading of Biomass‐Derived 5‐Hydroxymethylfurfural, Furfural, and Levulinic acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Atal Shivhare
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| | - Atul Kumar
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| | - Rajendra Srivastava
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab-140001 India
| |
Collapse
|
17
|
Zhang Y, Yu W, Cao S, Sun Z, Nie X, Liu Y, Zhao Z. Photocatalytic Chemoselective Transfer Hydrogenation of Quinolines to Tetrahydroquinolines on Hierarchical NiO/In 2O 3–CdS Microspheres. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuo Cao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhe Sun
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Tian Y, Wang Y, Zhang H, Xiao L, Wu W. Novel C@Ni3P Nanoparticles for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catal Letters 2021. [DOI: 10.1007/s10562-021-03680-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Kumar A, Bal R, Srivastava R. Modulation of Ru and Cu nanoparticle contents over CuAlPO-5 for synergistic enhancement in the selective reduction and oxidation of biomass-derived furan based alcohols and carbonyls. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00593f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu–Ru NP decorated CuAlPO-5 catalysts with low contents of Ru exhibit excellent activity and selectivity in the reduction and the oxidation of biomass-derived platform chemicals.
Collapse
Affiliation(s)
- Abhinav Kumar
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Rajaram Bal
- Nanocatalysis Area Conversion and Catalysis Division
- CSIR-Indian Institute of Petroleum
- Dehradun
- India
| | - Rajendra Srivastava
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| |
Collapse
|