1
|
Dewangan C, Kumawat S, Bhatt T, Natte K. Homogenous nickel-catalyzed chemoselective transfer hydrogenation of functionalized nitroarenes with ammonia-borane. Chem Commun (Camb) 2023. [PMID: 37997758 DOI: 10.1039/d3cc05173k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Homogeneous Ni-catalyzed highly selective transfer hydrogenation of nitroarenes was successfully established using NH3BH3 as a hydrogen source. A broad range of functional groups were selectively reduced to provide the corresponding anilines in good to high yields. Further, pharmaceutically active compounds can be prepared that would otherwise be challenging to access.
Collapse
Affiliation(s)
- Chitrarekha Dewangan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Sandeep Kumawat
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Tarun Bhatt
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| |
Collapse
|
2
|
Fessler J, Junge K, Beller M. Applying green chemistry principles to iron catalysis: mild and selective domino synthesis of pyrroles from nitroarenes. Chem Sci 2023; 14:11374-11380. [PMID: 37886090 PMCID: PMC10599485 DOI: 10.1039/d3sc02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 10/28/2023] Open
Abstract
An efficient and general cascade synthesis of pyrroles from nitroarenes using an acid-tolerant homogeneous iron catalyst is presented. Initial (transfer) hydrogenation using the commercially available iron-Tetraphos catalyst is followed by acid catalysed Paal-Knorr condensation. Both formic acid and molecular hydrogen can be used as green reductants in this process. Particularly, under transfer hydrogenation conditions, the homogeneous catalyst shows remarkable reactivity at low temperatures, high functional group tolerance and excellent chemoselectivity transforming a wide variety of substrates. Compared to classical heterogeneous catalysts, this system presents complementing reactivity, showing none of the typical side reactions such as dehalogenation, debenzylation, arene or olefin hydrogenation. It thereby enhances the chemical toolbox in terms of orthogonal reactivity. The methodology was successfully applied to the late-stage modification of multi-functional drug(-like) molecules as well as to the one-pot synthesis of the bioactive agent BM-635.
Collapse
Affiliation(s)
- Johannes Fessler
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
3
|
Gallinger TL, Obermann W, Lange-Grünweller K, Schmidt N, Haeberlein S, Grünweller A, Grevelding CG, Schlitzer M. From dithiocarbamates to branched dithiocarbazates: Compounds with potent antischistosomal activity. Arch Pharm (Weinheim) 2023; 356:e2200491. [PMID: 36482264 DOI: 10.1002/ardp.202200491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
Schistosomiasis or bilharzia is caused by blood flukes of the genus Schistosoma and represents a considerable health and economic burden in tropical and subtropical regions. The treatment of this infectious disease relies on one single drug: praziquantel (PZQ). Therefore, new and potent antischistosomal compounds need to be developed. In our previous work, starting with the drug disulfiram, we developed dithiocarbamates with in vitro antischistosomal activities in the low micromolar range. Based on these results, we report in this study on the synthesis and biological testing of the structurally related dithiocarbazates against Schistosoma mansoni, one of the major species of schistosomes. In total, three series of dithiocarbazate derivatives were examined, and we found that the antischistosomal activity of N-unbranched dithiocarbazates increased by further N-substitution. Comparable tetra-substituted dithiocarbazates were rarely described in the literature, thus a synthesis route was established. Due to the elaborate synthesis, the branched dithiocarbazates (containing an N-aminopiperazine) were simplified, but the resulting branched dithiocarbamates (containing a 4-aminopiperidine) were considerably less active. Taken together, dithiocarbazate-containing compounds with an in vitro antischistosomal activity of 5 µM were obtained.
Collapse
Affiliation(s)
- Tom L Gallinger
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Wiebke Obermann
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | | | - Nina Schmidt
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Simone Haeberlein
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | | | - Martin Schlitzer
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Liu X, Ren Y, Wang M, Ren X, Liu J, Yang Q. Cooperation of Pt and TiO x in the Hydrogenation of Nitrobenzothiazole. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoyan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yiqi Ren
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Maodi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaomin Ren
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Xiong R, Cheng M, Wang R, Tao L, Wang Z, Zhang M. A Carbon Shell Covered Pd Catalyst for Hydrogenation of 4-Nitrothioanisole. Catal Letters 2022. [DOI: 10.1007/s10562-022-03925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Jin SH, Ko W, Lee S, Hwang YJ. Combining flow synthesis and heterogeneous catalysis for the preparation of conjugated polymers. Polym Chem 2022. [DOI: 10.1039/d2py00362g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first successful synthesis of a conjugated polymer using a heterogeneous palladium catalyst in a flow system. The resulting polymer with an Mn of 13.6 kDa and high reproducibility shows the great potential of this system.
Collapse
Affiliation(s)
- Seung-Hwan Jin
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Wonyoung Ko
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Seungjun Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Ye-Jin Hwang
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|