1
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
El Haitami A, Resmerita AM, Ursu LE, Asandulesa M, Cantin S, Farcas A. Novel Insight into the Photophysical Properties and 2D Supramolecular Organization of Poly(3,4-ethylenedioxythiophene)/Permodified Cyclodextrins Polyrotaxanes at the Air-Water Interface. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4757. [PMID: 37445070 DOI: 10.3390/ma16134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Two poly(3,4-ethylenedioxythiophene) polyrotaxanes (PEDOT∙TMe-βCD and PEDOT∙TMe-γCD) end-capped by pyrene (Py) were synthesized by oxidative polymerization of EDOT encapsulated into TMe-βCD or TMe-γCD cavities with iron (III) chloride (FeCl3) in water and chemically characterized. The effect of TMe-βCD or TMe-γCD encapsulation of PEDOT backbones on the molecular weight, thermal stability, and solubility were investigated in depth. UV-vis absorption, fluorescence (FL), phosphorescence (PH), quantum efficiencies, and lifetimes in water and acetonitrile were also explored, together with their surface morphology and electrical properties. Furthermore, dynamic light scattering was used to study the hydrodynamic diameter (DH) and z-potential (ZP-ζ) of the water soluble fractions of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD. PEDOT∙TMe-βCD and PEDOT∙TMe-γCD exhibited a sharp monodisperse peak with a DH of 55 ± 15 nm and 122 ± 32 nm, respectively. The ZP-ζ value decreased from -31.23 mV for PEDOT∙TMe-βCD to -20.38 mV for PEDOT∙TMe-γCD, indicating that a negatively charged layer covers their surfaces. Surface pressure-area isotherms and Brewster angle microscopy (BAM) studies revealed the capability of the investigated compounds to organize into sizeable and homogeneous 2D supramolecular assemblies at the air-water interface. The control of the 2D monolayer organization through the thermodynamic parameters of PEDOT∙TMe-βCD and PEDOT∙TMe-γCD suggests potential for a wide range of optoelectronic applications.
Collapse
Affiliation(s)
- Alae El Haitami
- Laboratory of Physical Chemistry of Polymers and Interfaces, CY Cergy Paris Université, F95000 Cergy, France
| | - Ana-Maria Resmerita
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Laura Elena Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Mihai Asandulesa
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Sophie Cantin
- Laboratory of Physical Chemistry of Polymers and Interfaces, CY Cergy Paris Université, F95000 Cergy, France
| | - Aurica Farcas
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| |
Collapse
|
3
|
Gourlaouen C, Elaieb F, Brenner E, Matt D, Harrowfield J, Ricard L. Structural and conformational analysis of a biaryl phosphine integrating a calix[4]arene cavity. Can the phosphorus atom behave as an introverted donor? Dalton Trans 2023. [PMID: 37191123 DOI: 10.1039/d3dt00612c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The conformational preference of a cavity-based biaryl phosphine, namely 5-(2-diphenylphosphinyl-phenyl)-25,26,27,28-tetrapropyloxycalix[4]arene (L) has been investigated by density functional theory calculations. The analysis showed that the barrier to rotation about the C-C axle of the biaryl unit is only 10.7 kcal mol-1, this rendering possible access to conformers of two types, those in which the P lone pair sits at the cavity entrance and points to the calixarene interior, others with a more open structure where the P atom is located outside the cavity. As revealed by a single crystal X-ray diffraction study, the biaryl phosphine appears virtually as an atropisomer in the solid state in which the phosphorus atom lies totally out of the cavity defined by the four phenoxy rings.
Collapse
Affiliation(s)
- Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France
| | - Fethi Elaieb
- Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg Cedex, France.
| | - Eric Brenner
- Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg Cedex, France.
| | - Dominique Matt
- Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg Cedex, France.
| | - Jack Harrowfield
- Institut de Science et Ingénierie Supramoléculaire (ISIS), UMR 7606 CNRS, Université de Strasbourg, 8 rue Gaspard Monge, 67083 Strasbourg Cedex, France
| | - Louis Ricard
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, Ecole Polytechnique, 2 route de Saclay, F-91128 Palaiseau Cedex, France
| |
Collapse
|
4
|
Ma M, Liang J. Voltammetric detection of 2-aminoazotoluene based on electropolymerization of β-cyclodextrin. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
6
|
Wen Z, Maisonhaute E, Zhang Y, Roland S, Sollogoub M. Janus-type homo-, hetero- and mixed valence-bimetallic complexes with one metal encapsulated in a cyclodextrin. Chem Commun (Camb) 2022; 58:4516-4519. [PMID: 35302572 DOI: 10.1039/d2cc00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis-azolium salts with one azolium capping a perbenzylated α-cyclodextrin have been designed to generate Janus-type bimetallic complexes with various combinations of copper, silver, gold or palladium salts. Encapsulation of one metal center inside the cavity allowed (trans)metalation and oxidation reactions to be controlled at selected positions. In particular, it was possible to oxidize AuI into AuIII selectively on the position outside the cavity of the cyclodextrin on the bis-AuI Janus complex.
Collapse
Affiliation(s)
- Zhonghang Wen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232. 4, Place Jussieu, Paris 75005, France.
| | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques (LISE) UMR 8235. 4, place Jussieu, Paris 75005, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232. 4, Place Jussieu, Paris 75005, France.
| | - Sylvain Roland
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232. 4, Place Jussieu, Paris 75005, France.
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232. 4, Place Jussieu, Paris 75005, France.
| |
Collapse
|
7
|
Pawar SA, Poojari SV, A VK. Cu2O‐CD nanosuperstructures as a BiomimeticCatalyst for Oxidation of Benzylicsp3 C–H bonds and SecondaryAmines using Molecular Oxygen:First Total Synthesis ofproposed SwerilactoneO. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Vijay Kumar A
- Institute of Chemical Technology Department of Chemistry C304,Advance CentreDepartment of Chemistry, Institute of Chemical TechnologyNP Marg,Matunga 400019 Mumbai INDIA
| |
Collapse
|
8
|
Kraus H, Hansen N. An atomistic view on the uptake of aromatic compounds by cyclodextrin immobilized on mesoporous silica. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe effect of immobilized $$\upbeta$$
β
-cyclodextrin (bCD) molecules inside a mesoporous silica support on the uptake of benzene and p-nitrophenol from aqueous solution was investigated using all-atom molecular dynamics (MD) simulations. The calculated adsorption isotherms are discussed with respect to the free energies of binding for a 1:1 complex of bCD and the aromatic guest molecule. The adsorption capacity of the bCD-containing material significantly exceeds the amount corresponding to a 1:1 binding scenario, in agreement with experimental observations. Beside the formation of 1:2 and, to a lesser extent, 1:3 host:guest complexes, also host–host interactions on the surface as well as more unspecific host–guest interactions govern the adsorption process. The demonstrated feasibility of classical all-atom MD simulations to calculate liquid phase adsorption isotherms paves the way to a molecular interpretation of experimental data that are too complex to be described by empirical models.
Collapse
|
9
|
Odeh F, Adaileh F, Alshaer W, Nsairat H, Alqudah DA, Jaber AM, Al Bawab A. Synthesis of Mono-Amino Substituted γ-CD: Host-Guest Complexation and In Vitro Cytotoxicity Investigation. Molecules 2022; 27:1683. [PMID: 35268784 PMCID: PMC8911948 DOI: 10.3390/molecules27051683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides which can trap hydrophobic molecules and improve their chemical, physical, and biological properties. γ-CD showed the highest aqueous solubility with the largest cavity diameter among other CD types. The current study describes a direct and easy method for nucleophilic mono-aminos to be substituted with γ-CD and tested for their ability to host the guest curcumin (CUR) as a hydrophobic drug model. The mass spectrometry and NMR analyses showed the successful synthesis of three amino-modified γ-CDs: mono-6-amino-6-deoxy-cyclodextrine (γ-CD-NH2), mono-6-deoxy-6-ethanolamine-γ-cyclodextrine (γ-CD-NHCH2CH2OH), and mono-6-deoxy-6-aminoethylamino)-γ-cyclodextrin (γ-CD-NHCH2CH2NH2). These three amino-modified γ-CDs were proven to be able to host CUR as native γ-CDs with formation constants equal to 6.70 ± 1.02, 5.85 ± 0.80, and 8.98 ± 0.90 mM-1, respectively. Moreover, these amino-modified γ-CDs showed no significant toxicity against human dermal fibroblast cells. In conclusion, the current work describes a mono-substitution of amino-modified γ-CDs that can still host guests and showed low toxicity in human dermal fibroblasts cells. Therefore, the amino-modified γ-CDs can be used as a carrier host and be conjugated with a wide range of molecules for different biomedical applications, especially for active loading methods.
Collapse
Affiliation(s)
- Fadwa Odeh
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan; (F.A.); (A.A.B.)
| | - Fedaa Adaileh
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan; (F.A.); (A.A.B.)
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan;
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; (H.N.); (A.M.J.)
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan;
| | - Areej M. Jaber
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; (H.N.); (A.M.J.)
| | - Abeer Al Bawab
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan; (F.A.); (A.A.B.)
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
10
|
Seoane GA, Daher GM. Readily accessible azido-alkyne-functionalized monomers for the synthesis of cyclodextrin analogues using click chemistry. Org Biomol Chem 2022; 20:1690-1698. [DOI: 10.1039/d1ob02496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of linear and cyclic oligomers were synthesized starting from a suitable azido-alkyne monomer through click oligomerization. The synthesis of these monomers starting from bromobenzene features an enzymatic dihydroxylation...
Collapse
|
11
|
Herrera E, Riva J, Aprea S, Silva OF, Bercoff PG, Granados AM. FePd nanowires modified with cyclodextrin as improved catalysts: effect of the alloy composition on colloidal stability and catalytic capacity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02219a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FePd nanowires of different compositions are thoroughly characterized and assessed as catalysts for the reduction reaction of 4-nitrophenol to 4-aminophenol.
Collapse
Affiliation(s)
- Elisa Herrera
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto Nacional del Agua, Subgerencia Centro de la Región Semiárida (INA-SCIRSA), Córdoba, Argentina
| | - Julieta Riva
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Argentina
| | - Soledad Aprea
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Argentina
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Córdoba, Argentina
| | - O. Fernando Silva
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| | - Paula G. Bercoff
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Argentina
- Instituto de Física Enrique Gaviola, IFEG, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Córdoba, Argentina
| | - Alejandro M. Granados
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas, Departamento de Química Orgánica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| |
Collapse
|
12
|
Ru T, Liang G, Zhang L, Ning Y, Chen F. Linear Selective Hydroformylation of 2‐Arylpropenes Using Water‐Soluble Rh‐PNP Complex: Straightforward Access to 3‐Aryl‐Butyraldehydes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tong Ru
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Guanfeng Liang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Luyun Zhang
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Fen‐Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| |
Collapse
|
13
|
Kaya Z, Bentouhami E, Pelzer K, Armspach D. Cavity-shaped ligands for asymmetric metal catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|