1
|
Mäki-Arvela P, Simakova I, Vajglová Z, Kumar N, Murzin DY. Relating extrusion as a method of bifunctional catalysts synthesis and their catalytic performance. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Chang CY, Chen YF, Tsai YT, Huang CF, Pan YT, Tsai DH. Sustainable Synthesis of Epoxides from Halohydrin Cyclization by Composite Solid-Based Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ching-Yuan Chang
- Department of Chemical Engineering, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City 30013, Taiwan, R.O.C
| | - Yu-Fan Chen
- Department of Chemical Engineering, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City 30013, Taiwan, R.O.C
| | - Yi-Ta Tsai
- Chang Chun Plastic Co., Ltd., 7F, No. 301, Songjiang Rd., Taipei 104070, Taiwan, R.O.C
| | - Chien-Fu Huang
- Chang Chun Plastic Co., Ltd., 7F, No. 301, Songjiang Rd., Taipei 104070, Taiwan, R.O.C
| | - Yung-Tin Pan
- Department of Chemical Engineering, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City 30013, Taiwan, R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City 30013, Taiwan, R.O.C
| |
Collapse
|
3
|
Hernández-Giménez AM, Hernando H, Danisi RM, Vogt ET, Houben K, Baldus M, Serrano DP, Bruijnincx PC, Weckhuysen BM. Deactivation and regeneration of solid acid and base catalyst bodies used in cascade for bio-oil synthesis and upgrading. J Catal 2022. [DOI: 10.1016/j.jcat.2021.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Araki S, Weng K, Hirano S, Yamamoto H. Development of Mordenite/CaCO 3-based Reactant for CF 4 Decomposition. KAGAKU KOGAKU RONBUN 2021. [DOI: 10.1252/kakoronbunshu.47.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sadao Araki
- Depertment of Chemical, Energy and Environmental Engineering, Kansai University
| | - Kaiwei Weng
- Depertment of Chemical, Energy and Environmental Engineering, Kansai University
| | | | - Hideki Yamamoto
- Depertment of Chemical, Energy and Environmental Engineering, Kansai University
| |
Collapse
|
5
|
López-Renau LM, Hernando H, Gómez-Pozuelo G, Botas JA, Serrano DP. Utilisation of a basic K-grafted USY zeolite in catalytic pyrolysis of wheat straw to produce valuable oxygenated compounds. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Perspective Use of Fast Pyrolysis Bio-Oil (FPBO) in Maritime Transport: The Case of Brazil. ENERGIES 2021. [DOI: 10.3390/en14164779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The maritime transportation sector (MTS) is undertaking a major global effort to reduce emissions of greenhouse gases (GHG), e.g., sulfur oxides, nitrogen oxides, and the concentration of particulates in suspension. Substantial investment is necessary to develop alternative sustainable fuels, engines, and fuel modifications. The alternative fuels considered in this study include liquified natural gas, nuclear energy, hydrogen, electricity, and biofuels. This paper focuses on biofuels, in particular fast pyrolysis bio-oil (FPBO), a serious partial alternative in MTS. There are some drawbacks, e.g., biofuels usually require land necessary to produce the feedstock and the chemical compatibility of the resulting biofuel with current engines in MTS. The demand for sustainable feedstock production for MTS can be overcome by using cellulose-based and agroforestry residues, which do not compete with food production and can be obtained in large quantities and at a reasonably low cost. The compatibility of biofuels with either bunker fuel or diesel cycle engines can also be solved by upgrading biofuels, adjusting the refining process, or modifying the engine itself. The paper examines the possibilities presented by biofuels, focusing on FPBO in Brazil, for MTS. The key issues investigated include FPBO, production, and end use of feedstocks and the most promising alternatives; thermal conversion technologies; potential applications of FPBO in Brazil; sustainability; biofuels properties; fuels under consideration in MTS, challenges, and opportunities in a rapidly changing maritime fuel sector. Although the focus is on Brazil, the findings of this paper can be replicated in many other parts of the world.
Collapse
|